7/12y-3=24y-20

Simple and best practice solution for 7/12y-3=24y-20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/12y-3=24y-20 equation:



7/12y-3=24y-20
We move all terms to the left:
7/12y-3-(24y-20)=0
Domain of the equation: 12y!=0
y!=0/12
y!=0
y∈R
We get rid of parentheses
7/12y-24y+20-3=0
We multiply all the terms by the denominator
-24y*12y+20*12y-3*12y+7=0
Wy multiply elements
-288y^2+240y-36y+7=0
We add all the numbers together, and all the variables
-288y^2+204y+7=0
a = -288; b = 204; c = +7;
Δ = b2-4ac
Δ = 2042-4·(-288)·7
Δ = 49680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{49680}=\sqrt{144*345}=\sqrt{144}*\sqrt{345}=12\sqrt{345}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(204)-12\sqrt{345}}{2*-288}=\frac{-204-12\sqrt{345}}{-576} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(204)+12\sqrt{345}}{2*-288}=\frac{-204+12\sqrt{345}}{-576} $

See similar equations:

| (9/10)x=x-1 | | 15/1-i=0 | | 6/x+6/9=-3 | | 8(2x-1)=2x-9x | | 90=4x+4x+10 | | (1/3)x=x-3 | | 2x=x0 | | 64=-16x^2+64 | | 3-10-5y=-17 | | (1/2)=x-4 | | X(30-x)=81 | | (s+1)^2=5 | | 4(x-5)-8=-4(-7x+4)-6x | | 0x=x-5 | | -8(x-1)=4(x-11) | | x+6=3x-36 | | 420x+445+680x=1340x-1235 | | -24-8x=4(1-3x) | | (-3)=x3 | | 2(x-8)+#=-15 | | −4=6−7+h | | 3-5(2-y=-17 | | S+(s-1)+(s-2)=108 | | n-2/4=3n+3/18 | | X/3-y/3=1 | | 2x+8-6x=-40 | | 4-1/2(x)=-6 | | 16-x=-14 | | h−4=6−7+ | | 10p^2=980 | | (4/5)=x-2 | | -3x+7=7(1+7x) |

Equations solver categories