If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/1x+1/3x=2+5/3x
We move all terms to the left:
7/1x+1/3x-(2+5/3x)=0
Domain of the equation: 1x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
7/1x+1/3x-(5/3x+2)=0
We get rid of parentheses
7/1x+1/3x-5/3x-2=0
We calculate fractions
21x/3x^2+(-5x+1)/3x^2-2=0
We multiply all the terms by the denominator
21x+(-5x+1)-2*3x^2=0
Wy multiply elements
-6x^2+21x+(-5x+1)=0
We get rid of parentheses
-6x^2+21x-5x+1=0
We add all the numbers together, and all the variables
-6x^2+16x+1=0
a = -6; b = 16; c = +1;
Δ = b2-4ac
Δ = 162-4·(-6)·1
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{70}}{2*-6}=\frac{-16-2\sqrt{70}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{70}}{2*-6}=\frac{-16+2\sqrt{70}}{-12} $
| b2-5b=-6 | | 8x+1x=-x-1 | | x(x+12)=10x+8 | | 4y+86=-4 | | -2n+6+6n=1+5n+3 | | X=1200+15y | | 11w=16 | | 4/3w-3/5=-1/2 | | V=4/3(3.14159)(60-1.5t)^3 | | x^2-150x=10000 | | 4x*12x=320 | | 45=3n+10-8n | | 9y+4-3y=-32 | | 21+x=77 | | 81+x=107 | | 25000(1+.045/4)^8-25000=x | | 15.4x-0.5=5.4x+0.75 | | 11-m=17 | | 29=-x+20 | | -2(u+1)+5u=3((u+1)-2 | | .52=327000/x | | 10/x=3/13 | | 2c+3.4=16.8 | | -2y-10=15 | | -6(w-2)=-2w+48 | | 6u-26=2(u+1) | | 2(v-7)+7v=31 | | 37=-7x+4(x+7) | | 5(u-5)+8u=-38 | | 3.7=8.2/t | | (v+1)^(3/2)=-1 | | -3x-24=2x+8 |