7/2q+5=-3+2/q

Simple and best practice solution for 7/2q+5=-3+2/q equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2q+5=-3+2/q equation:



7/2q+5=-3+2/q
We move all terms to the left:
7/2q+5-(-3+2/q)=0
Domain of the equation: 2q!=0
q!=0/2
q!=0
q∈R
Domain of the equation: q)!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
7/2q-(2/q-3)+5=0
We get rid of parentheses
7/2q-2/q+3+5=0
We calculate fractions
7q/2q^2+(-4q)/2q^2+3+5=0
We add all the numbers together, and all the variables
7q/2q^2+(-4q)/2q^2+8=0
We multiply all the terms by the denominator
7q+(-4q)+8*2q^2=0
Wy multiply elements
16q^2+7q+(-4q)=0
We get rid of parentheses
16q^2+7q-4q=0
We add all the numbers together, and all the variables
16q^2+3q=0
a = 16; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·16·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*16}=\frac{-6}{32} =-3/16 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*16}=\frac{0}{32} =0 $

See similar equations:

| x^2(-2x^2+2)(2x^2+2x)=0 | | x^2(-4x^2+2)(6x^2+8x)=0 | | 2(x+3)-9=2x-3 | | 3x+10°=180 | | 12.5x+x=100 | | -2a-4=-5a+11 | | W+285-500b=12 | | (2x+1)*(x-1)=90 | | (t+8)(t+3)=4 | | 2p-18-5p=13p+12 | | 1.48x-3=0.70 | | -(5-+6)=2(3a+8) | | 45+2(5/6)x=2x+50 | | 6x-510x=75 | | 5c+13=2c+22 | | 23+7=-9x+15x | | 100b^2=25 | | 0=-4.9x^2+2x+30 | | 7b-4(3-b)=3(b+12) | | 4z-23=69 | | 7x+11=6x+11 | | 5a+9=-3a+33 | | 8(8n-5)=6(-1+5n) | | 3a+6a-8=28 | | x-1+5=9 | | 2(4x-3)+17x=44 | | 10-8v=-19v-12 | | 12=11x-10x | | (2x+1)*(x+1)=90 | | 8^6y=11 | | -19-17p=16-15p-3 | | 10m-3(2m+4)=24 |

Equations solver categories