If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/2x+1/2x=10+9/10x
We move all terms to the left:
7/2x+1/2x-(10+9/10x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 10x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
7/2x+1/2x-(9/10x+10)=0
We get rid of parentheses
7/2x+1/2x-9/10x-10=0
We calculate fractions
(10x+7)/20x^2+(-18x)/20x^2-10=0
We multiply all the terms by the denominator
(10x+7)+(-18x)-10*20x^2=0
Wy multiply elements
-200x^2+(10x+7)+(-18x)=0
We get rid of parentheses
-200x^2+10x-18x+7=0
We add all the numbers together, and all the variables
-200x^2-8x+7=0
a = -200; b = -8; c = +7;
Δ = b2-4ac
Δ = -82-4·(-200)·7
Δ = 5664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5664}=\sqrt{16*354}=\sqrt{16}*\sqrt{354}=4\sqrt{354}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{354}}{2*-200}=\frac{8-4\sqrt{354}}{-400} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{354}}{2*-200}=\frac{8+4\sqrt{354}}{-400} $
| p=0.3 | | 3(r+0.2)=2 | | 17p-6p+9p+-12p+3p=-11 | | -3(1-2x)-3(x-4)=5-4x | | 4-18z=9z+13 | | 2(r-6.00)=12.00 | | (6b–58)+(8b–56)=180 | | -3-2n=-7 | | p=3.3 | | 4.8=v/3-1.2 | | 4=m/6-7 | | 12+15d=12+19d | | 9r-3=-21 | | 2x^2+14x+120=180 | | -4t=8-5t | | p=3.6 | | 13j-11j=2 | | 7+5k+8k=12+8k | | 16b=16 | | -13-2d=-3d | | -15c=12-14c | | -5(x+12)=120 | | 6y-7+4y+9=(3.75+4.5)4+2y+2 | | 5n+5=7n-n+5 | | 0.5x=x/2 | | 5n-5=7n-n+5 | | 30x4-21x3-36x2=0 | | -39-6x=6x-3 | | 6x+9-7x=-5 | | 180=90-30-x+67 | | v-4-8v=-18 | | 2s+25=170+3s-5 |