7/2x+1/3x=12+5/3x

Simple and best practice solution for 7/2x+1/3x=12+5/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2x+1/3x=12+5/3x equation:



7/2x+1/3x=12+5/3x
We move all terms to the left:
7/2x+1/3x-(12+5/3x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/2x+1/3x-(5/3x+12)=0
We get rid of parentheses
7/2x+1/3x-5/3x-12=0
We calculate fractions
21x/6x^2+(-10x+1)/6x^2-12=0
We multiply all the terms by the denominator
21x+(-10x+1)-12*6x^2=0
Wy multiply elements
-72x^2+21x+(-10x+1)=0
We get rid of parentheses
-72x^2+21x-10x+1=0
We add all the numbers together, and all the variables
-72x^2+11x+1=0
a = -72; b = 11; c = +1;
Δ = b2-4ac
Δ = 112-4·(-72)·1
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{409}}{2*-72}=\frac{-11-\sqrt{409}}{-144} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{409}}{2*-72}=\frac{-11+\sqrt{409}}{-144} $

See similar equations:

| t-76=218 | | 0.25(2n-28)=10 | | 1/4(2n-28)=10 | | 3d+2(d-5)=25 | | ∠B=3x+13∘ | | -7c-5c+8=-16 | | -7+7x=2(-7+7x) | | 7-x/2+8=10 | | 4(-6+5v)=-16 | | 18=6r-3r | | 6.25-1.25x=x | | (2x+31)=0.5(7x-24) | | F(x)=(x-5)(5x+2) | | x3+2x+-33=0 | | -23+x=x+18 | | 2y=4÷5+9 | | 3+8n-2=9n+43-7n | | -12=-1x/5 | | 7n-4=-2n+9n-5 | | -7h+3(4-6h)=137 | | 23x-85=191$ | | 3m-2(3m-8)=8-(m+4 | | -12=-1/5x | | 5k-7=-6k-29 | | -4x=20-(-4 | | 2.8-6x=0.7+x | | 1+2t-2-t+3+3t=0 | | 2n+10=4n | | 10x-31=180 | | 6y+22=4y+42 | | 2x/2=2/5 | | 60=3.5g |

Equations solver categories