7/2x+12+4=-8/x+6

Simple and best practice solution for 7/2x+12+4=-8/x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2x+12+4=-8/x+6 equation:



7/2x+12+4=-8/x+6
We move all terms to the left:
7/2x+12+4-(-8/x+6)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+6)!=0
x∈R
We add all the numbers together, and all the variables
7/2x-(-8/x+6)+16=0
We get rid of parentheses
7/2x+8/x-6+16=0
We calculate fractions
7x/2x^2+16x/2x^2-6+16=0
We add all the numbers together, and all the variables
7x/2x^2+16x/2x^2+10=0
We multiply all the terms by the denominator
7x+16x+10*2x^2=0
We add all the numbers together, and all the variables
23x+10*2x^2=0
Wy multiply elements
20x^2+23x=0
a = 20; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·20·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*20}=\frac{-46}{40} =-1+3/20 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*20}=\frac{0}{40} =0 $

See similar equations:

| (x+5)-2=x-1 | | 3(x+2)−10=4x−6+x | | 8^3x=32768 | | 64=15/4(2x-2/3)-11/4 | | −15x=−5(3x+7) | | 25v=156 | | x3-3x2+2x=0 | | 4^(1-3x)=3^(x) | | 5=1+4n | | -3-4=2-3(n+1 | | x+3(-5/7)=-1 | | D=45.2t | | 8x-4x+9=-21 | | 5x-3=12x=11 | | 9x2+3=21 | | m/8=256 | | v/5-12=8 | | 4•4=4(s+2) | | 6x+4=12x-2 | | –3(q–4)+15=–5(q–7)–10 | | 92(p+5)=644 | | 8n-3=2+3(n+8) | | 0.25x9.6= | | 5n-7n+3=-7 | | 3x-5(2x+1)=9 | | 5/7(k+5=-7 | | -4=5+3n/2 | | 7=3x-17 | | 47=6-3y | | 45+45+135+135+4x=360 | | 6(v-6)+8v=1 | | -a/4=3/8 |

Equations solver categories