If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/2x+5-3/10x+10=11/120
We move all terms to the left:
7/2x+5-3/10x+10-(11/120)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 10x!=0We add all the numbers together, and all the variables
x!=0/10
x!=0
x∈R
7/2x-3/10x+5+10-(+11/120)=0
We add all the numbers together, and all the variables
7/2x-3/10x+15-(+11/120)=0
We get rid of parentheses
7/2x-3/10x+15-11/120=0
We calculate fractions
(-220x^2)/2400x^2+8400x/2400x^2+(-720x)/2400x^2+15=0
We multiply all the terms by the denominator
(-220x^2)+8400x+(-720x)+15*2400x^2=0
Wy multiply elements
(-220x^2)+36000x^2+8400x+(-720x)=0
We get rid of parentheses
-220x^2+36000x^2+8400x-720x=0
We add all the numbers together, and all the variables
35780x^2+7680x=0
a = 35780; b = 7680; c = 0;
Δ = b2-4ac
Δ = 76802-4·35780·0
Δ = 58982400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{58982400}=7680$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7680)-7680}{2*35780}=\frac{-15360}{71560} =-384/1789 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7680)+7680}{2*35780}=\frac{0}{71560} =0 $
| 5x-3-2x-1=17+7x-6 | | 7s-21=182 | | 3(x+4)-4(7+4)=27 | | 3(x+7)+6(7-4)=56 | | 12x-x+15x=208 | | 5s+46=126 | | m=-6(6,-9) | | 6(2x-5)=-(x) | | (3x+4)=(2x-7) | | m=-4(4,-5) | | (60+3x)*(80-2x)=5346 | | 23x-3=8 | | 5p-1/2=7 | | 3z-3z=7 | | 23x-15=8 | | 2×(x+7)-x-10=9 | | 6x-4=8x-16 | | 13-7x=10x-4 | | (3x+1)4=(2x+8)+(x+8)+(4x+2) | | 2x+10~3=8 | | 2-(13-m)=-m-19)-6 | | 3(x-7)=5x+9 | | 2/5x=7/8 | | 6x+10=45+2x | | y/9+47=64 | | 2^(3x+1)=8. | | 2^3x+1=8. | | 8u+16=56+8u | | 4(x-5)^2+3=14 | | (2x+3)-(x-1)=7 | | 49x-5)^2+3=14 | | (60+3x)*(80-2x)=0 |