7/2x-3=2/3x+5

Simple and best practice solution for 7/2x-3=2/3x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2x-3=2/3x+5 equation:



7/2x-3=2/3x+5
We move all terms to the left:
7/2x-3-(2/3x+5)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x+5)!=0
x∈R
We get rid of parentheses
7/2x-2/3x-5-3=0
We calculate fractions
21x/6x^2+(-4x)/6x^2-5-3=0
We add all the numbers together, and all the variables
21x/6x^2+(-4x)/6x^2-8=0
We multiply all the terms by the denominator
21x+(-4x)-8*6x^2=0
Wy multiply elements
-48x^2+21x+(-4x)=0
We get rid of parentheses
-48x^2+21x-4x=0
We add all the numbers together, and all the variables
-48x^2+17x=0
a = -48; b = 17; c = 0;
Δ = b2-4ac
Δ = 172-4·(-48)·0
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17}{2*-48}=\frac{-34}{-96} =17/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17}{2*-48}=\frac{0}{-96} =0 $

See similar equations:

| 5^x=25^x+2 | | 4(x+7)–5x=6–2x | | 9x^2+21x^2=34^2 | | 4(-5v-7)=-188 | | 2x+3÷x+4=2 | | x=12/13 | | (x*x)+(x*9/21)^2=34^2 | | -2x-14+5=-6x-14-1 | | 9^(x)=3^(x)+6 | | 4x+10+4=6x+10-10 | | 3x+1+7=6x+1+6 | | 2-3t^2=0 | | 2x2-x-3=-x+5 | | (x+5)(x-4)=30 | | x2-3=-x+3 | | -2(1+7a)-2a=-130 | | x-0=2x-3 | | Z^2-3z+7=0 | | 4(w-1)=7w+20 | | 6x-3(8x-4)=138 | | n+10=14-(4-n) | | n+10=14-(4-n) | | 1y+10=2y+7 | | 3(x2-1)=4x-9 | | (3x+4)(2x-1)+4=0 | | 7a+2=9a^2 | | 21+2(-x-3)+4=-3x+3(x-2) | | 3p+3/14=6/7 | | 5a+5-3a=-7 | | 1/10x^2-13x+3=0 | | 2x+3=7x-6x | | 2x2=4-6= |

Equations solver categories