7/2x-3=4/x+1

Simple and best practice solution for 7/2x-3=4/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2x-3=4/x+1 equation:



7/2x-3=4/x+1
We move all terms to the left:
7/2x-3-(4/x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We get rid of parentheses
7/2x-4/x-1-3=0
We calculate fractions
7x/2x^2+(-8x)/2x^2-1-3=0
We add all the numbers together, and all the variables
7x/2x^2+(-8x)/2x^2-4=0
We multiply all the terms by the denominator
7x+(-8x)-4*2x^2=0
Wy multiply elements
-8x^2+7x+(-8x)=0
We get rid of parentheses
-8x^2+7x-8x=0
We add all the numbers together, and all the variables
-8x^2-1x=0
a = -8; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-8)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-8}=\frac{0}{-16} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-8}=\frac{2}{-16} =-1/8 $

See similar equations:

| 6(a-2)=8-3a | | (2x+3)(4x-8=0 | | 5p^2=180 | | 6.75+3/8x=52/4 | | 3x-5=2-7 | | 4+2t=24 | | 3=b+53 | | (5-x)^1/2=x+1 | | m/3=m/2-1 | | 16=11+y | | 5/2+1/4=11/4+x | | v+2.38=8.45 | | 3/4-3x=1/4/x | | 8w-15=-25 | | r2=1 | | 5x-18=2-3x | | 3=5+6x | | (3x^2-5)^2=19 | | 12(x+5)-3x=15 | | 3x-27=50 | | 4=10+z4 | | 2x(x-3)=3 | | 5/x=25+5/x | | X^2+101=20x | | 27=9t | | 2x(x-3)=32x(x-3)=3 | | -2(3x–2)+4x=11 | | s+9=17 | | 4x+4=6x–2 | | 1/5(x-4)+3=-1/3(2x+1)-1 | | 9x+8=3x+10 | | 4(x-3)(3x+2)^4+5(3x+2)^5/(3x+2)^10=0 |

Equations solver categories