7/3*x+5=5/6*x-4

Simple and best practice solution for 7/3*x+5=5/6*x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3*x+5=5/6*x-4 equation:



7/3x+5=5/6x-4
We move all terms to the left:
7/3x+5-(5/6x-4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-4)!=0
x∈R
We get rid of parentheses
7/3x-5/6x+4+5=0
We calculate fractions
42x/18x^2+(-15x)/18x^2+4+5=0
We add all the numbers together, and all the variables
42x/18x^2+(-15x)/18x^2+9=0
We multiply all the terms by the denominator
42x+(-15x)+9*18x^2=0
Wy multiply elements
162x^2+42x+(-15x)=0
We get rid of parentheses
162x^2+42x-15x=0
We add all the numbers together, and all the variables
162x^2+27x=0
a = 162; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·162·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*162}=\frac{-54}{324} =-1/6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*162}=\frac{0}{324} =0 $

See similar equations:

| 7x+7=8x+10 | | 5.9x-7.9=3.9 | | 7x+7=8x+18 | | x+(3x)=644 | | 7x+7=8x+5 | | 5x-13=3x=3 | | 6.4x-8.5=10.7 | | 9-26=8y-6 | | 8(8-k)=-2=(k-5) | | (x+35)+2x=180 | | 5c+8=50 | | 6x+48=4x-10 | | 8c+5=50 | | x+98=237 | | 4x+2.8=64 | | -2(3x+4)+4(3x-4)=(5x-4)-3x | | x+35+110+(x+12)=180 | | 3+y=1/2(6+2y) | | 60+(x+40)=180 | | 17x/9(x+4)=3x-26 | | 8x+4(4x-3)=4(6x+4)-16 | | 23-2x=-3x-1 | | 22155.84=4*3.14*r^2 | | x+1/1+x=0 | | 9k+12=8 | | (5+x)3=20 | | 10x+44=12x-26 | | .3x+13.5=x-4.49 | | x+15+5x+7=90 | | 350=-16x^2+156x+15 | | 9(x+8)=144 | | 6x^2-6x72=0 |

Equations solver categories