If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/30x+8/5x-5/4=11/12
We move all terms to the left:
7/30x+8/5x-5/4-(11/12)=0
Domain of the equation: 30x!=0
x!=0/30
x!=0
x∈R
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
7/30x+8/5x-5/4-(+11/12)=0
We get rid of parentheses
7/30x+8/5x-5/4-11/12=0
We calculate fractions
(-45000x^2)/28800x^2+(-33000x^2)/28800x^2+6720x/28800x^2+46080x/28800x^2=0
We multiply all the terms by the denominator
(-45000x^2)+(-33000x^2)+6720x+46080x=0
We add all the numbers together, and all the variables
(-45000x^2)+(-33000x^2)+52800x=0
We get rid of parentheses
-45000x^2-33000x^2+52800x=0
We add all the numbers together, and all the variables
-78000x^2+52800x=0
a = -78000; b = 52800; c = 0;
Δ = b2-4ac
Δ = 528002-4·(-78000)·0
Δ = 2787840000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2787840000}=52800$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52800)-52800}{2*-78000}=\frac{-105600}{-156000} =44/65 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52800)+52800}{2*-78000}=\frac{0}{-156000} =0 $
| 3-4(x+2)=2(x-5)+4 | | A=12(3x+4) | | 7+4=2x+1 | | -29-2k=-(-1-4k) | | 1a+1a+2a+2a=360 | | L10x-3=8x-39 | | 2x*(x+3)=360 | | 3/5x+18=30 | | 29-x/4=(×+5) | | 2/x-6=5x | | -5.3=l/4 | | 3(2w-1)+8=w | | 5=1-x6 | | 1/2+n+3=21 | | 1/4x-2/3=3/4+1/3 | | 4x-1=-6+2x+3 | | 4x+9+x=84 | | 4/3y+13/10=3/10 | | 4y′′+20y′+33y=0 | | 4y=16777216 | | 13/2y-4/5=1/5 | | 9x-10x=-160+x=-160 | | |-5k-2|=27 | | 7+5(7k-5)=8k+36 | | 3k-14+25=2-6k-12 | | (A+2)(a-9)=0 | | 5-(n+4=20 | | 210t=41790+5 | | 5.4-1.9x=8x | | 20,000-4x=0 | | 3x^2−2x=12 | | 4.2+1.8a=2.5a |