If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/3x+1/3x=1+5/3x.
We move all terms to the left:
7/3x+1/3x-(1+5/3x.)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x.)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
7/3x+1/3x-(5/3x.+1)=0
We get rid of parentheses
7/3x+1/3x-5/3x.-1=0
We calculate fractions
(3x+7)/9x^2+(-15x)/9x^2-1=0
We multiply all the terms by the denominator
(3x+7)+(-15x)-1*9x^2=0
Wy multiply elements
-9x^2+(3x+7)+(-15x)=0
We get rid of parentheses
-9x^2+3x-15x+7=0
We add all the numbers together, and all the variables
-9x^2-12x+7=0
a = -9; b = -12; c = +7;
Δ = b2-4ac
Δ = -122-4·(-9)·7
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{11}}{2*-9}=\frac{12-6\sqrt{11}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{11}}{2*-9}=\frac{12+6\sqrt{11}}{-18} $
| 96=6(k+8) | | 2a+44+(a-10)=180 | | 2+5y-4=23 | | 4(3x-7)=66-2(2x+9) | | -5(-2+x)=10+2x+3x | | 30j=810 | | 14+2x=-16+9x | | 5/6+3(4/5x-6)=12 | | 34(5+57x)=66x-30 | | 4(3x-7)=66+2(2x-9) | | 5x+15=4x-3 | | 34(5×57x)=66x-30 | | 4=2q-12 | | x=2(x-5)=14 | | 0,1-2x=0,031 | | 6+8(x+3)=94 | | 830=r-45 | | 3x+2x=49 | | 5+y-14=-15 | | 5n+2=7n | | g/2+8=20 | | 7(23+5)=1x+-80 | | 4x−5(2x+1)=-6x | | 3x-4=18+5× | | 7(25+5)=1x+-80 | | -f-(16+6f)=-3(-10f-1)-19 | | -10+2(5-2x)=6(x+1)-8x-2x | | t+140=835 | | 50z^2=36-5z | | 3x+4(x+5)=x-4 | | 7(17+5)=1x+-80 | | u/3+10=14 |