7/3x+1=2/x+2

Simple and best practice solution for 7/3x+1=2/x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x+1=2/x+2 equation:



7/3x+1=2/x+2
We move all terms to the left:
7/3x+1-(2/x+2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x+2)!=0
x∈R
We get rid of parentheses
7/3x-2/x-2+1=0
We calculate fractions
7x/3x^2+(-6x)/3x^2-2+1=0
We add all the numbers together, and all the variables
7x/3x^2+(-6x)/3x^2-1=0
We multiply all the terms by the denominator
7x+(-6x)-1*3x^2=0
Wy multiply elements
-3x^2+7x+(-6x)=0
We get rid of parentheses
-3x^2+7x-6x=0
We add all the numbers together, and all the variables
-3x^2+x=0
a = -3; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-3)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-3}=\frac{-2}{-6} =1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-3}=\frac{0}{-6} =0 $

See similar equations:

| 1/3x-51/2=61/2 | | 828=23(k+31) | | 3n-5=49 | | 3(x-1)+2x-12=100 | | 823=23(k+31) | | 19x+3=-3 | | x0.8+0.1=-1.9 | | 8+9+x=43 | | x/1.3=50 | | 3(2p+3)=6 | | 12x+20+15x=-4 | | x-17(-4)=-56 | | 6x=3(x+4)-4 | | 18x+13=-1 | | 5x-4x=1/2 | | 3(s+45)=417 | | 12x+20=15x-4 | | X/4+x/7=2 | | F(x)=x^2×3x-1 | | 630=15(v+35) | | 17x+(-9)=-3 | | 8(3s+3)=96 | | 8+2x=5x+2 | | 22=y÷25 | | j+190/14=24 | | 36m+200=13,985 | | 9y+2y+5=180 | | 3w-1÷5+1=7w+2÷15 | | 2z-1/3-3z+1/5=1 | | 6=r/20-6 | | 22=y/25 | | 9y+2y+5=90 |

Equations solver categories