7/3x+1=2/x=+2

Simple and best practice solution for 7/3x+1=2/x=+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x+1=2/x=+2 equation:



7/3x+1=2/x=+2
We move all terms to the left:
7/3x+1-(2/x)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/3x-(+2/x)+1=0
We get rid of parentheses
7/3x-2/x+1=0
We calculate fractions
7x/3x^2+(-6x)/3x^2+1=0
We multiply all the terms by the denominator
7x+(-6x)+1*3x^2=0
Wy multiply elements
3x^2+7x+(-6x)=0
We get rid of parentheses
3x^2+7x-6x=0
We add all the numbers together, and all the variables
3x^2+x=0
a = 3; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·3·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*3}=\frac{-2}{6} =-1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*3}=\frac{0}{6} =0 $

See similar equations:

| 504=8(5x+3) | | 71-u=261 | | 43​ (12x+8)=−4x+16 | | (9x-8)/4=-10-(6-2x) | | 2(x+3)=-x+24 | | 2(5x+6)=13x-6 | | 3p=-8+4p | | 20x+5=8x | | 5+8p=6p-5 | | 2x+8=8x+32 | | 10x+26=8+36 | | 66+b=180 | | 496=8(7x-22) | | 3(4x+6)=2(6x-8) | | -25=-1/3n-10 | | 7y-6=6y+2 | | 12x2=20 | | 1/4m=12-m | | 266=199-x | | 0=-2x^2+3x-50 | | 7s-1=9+8s | | P(x)=-x^2+35x-300 | | -z+10=z | | 78+a=180 | | 0=-2x^{2}+3x-50 | | 26x+10=36+8 | | -5(4x-4)-2x+4=-28 | | 640=8(9x-19) | | 2x+5+5x+3=0 | | x+0.2x=135.6 | | 3x-15=2x+35 | | 3r-r+2{r+4}=24 |

Equations solver categories