7/3x+7/12=1/4x+3

Simple and best practice solution for 7/3x+7/12=1/4x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x+7/12=1/4x+3 equation:



7/3x+7/12=1/4x+3
We move all terms to the left:
7/3x+7/12-(1/4x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x+3)!=0
x∈R
We get rid of parentheses
7/3x-1/4x-3+7/12=0
We calculate fractions
336x^2/144x^2+336x/144x^2+(-36x)/144x^2-3=0
We multiply all the terms by the denominator
336x^2+336x+(-36x)-3*144x^2=0
Wy multiply elements
336x^2-432x^2+336x+(-36x)=0
We get rid of parentheses
336x^2-432x^2+336x-36x=0
We add all the numbers together, and all the variables
-96x^2+300x=0
a = -96; b = 300; c = 0;
Δ = b2-4ac
Δ = 3002-4·(-96)·0
Δ = 90000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{90000}=300$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-300}{2*-96}=\frac{-600}{-192} =3+1/8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+300}{2*-96}=\frac{0}{-192} =0 $

See similar equations:

| 3(x+7)+2x=31 | | 7÷x=-26 | | 24=-4(m-1) | | -3(4x-5)=-14 | | -8=-6/5x | | 5/7(t+7)=2/3+23 | | 24=-4(m+7)-4m-1) | | −4(7a+5)=−160 | | 6x+8+2=22 | | 4(x–4)=2(2x–8) | | -5(1-5p)+5(8(-2)=-4p-8p | | .5(n-4)-7=-2n+6 | | -4/3x=-11 | | -(k+0.9)=12.8 | | 0.6b=6 | | 2(3x–6)=4(2x–4) | | 3x+6x-2=3x+22 | | 3+3k=-4-2k+4k | | 6x–5=-3(2x+1) | | 18w=-54 | | -11=-4/3x | | 7(3w+7)/5=4 | | z−16=–9 | | -3(3+3a)=-7a-11 | | -3b+5(b-3)=-15+2b | | 7-5t=-9-3t | | -3(2x+6)=-48 | | 2(4.6x−4.2)+1.9=2.7x | | 192=-4(1+7r) | | 4+3x-1=9. | | 34a−4(5a+2)=36 | | 4(x-1)=-32 |

Equations solver categories