7/3x-2/5x=1/15

Simple and best practice solution for 7/3x-2/5x=1/15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x-2/5x=1/15 equation:



7/3x-2/5x=1/15
We move all terms to the left:
7/3x-2/5x-(1/15)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
7/3x-2/5x-(+1/15)=0
We get rid of parentheses
7/3x-2/5x-1/15=0
We calculate fractions
(-75x^2)/225x^2+525x/225x^2+(-90x)/225x^2=0
We multiply all the terms by the denominator
(-75x^2)+525x+(-90x)=0
We get rid of parentheses
-75x^2+525x-90x=0
We add all the numbers together, and all the variables
-75x^2+435x=0
a = -75; b = 435; c = 0;
Δ = b2-4ac
Δ = 4352-4·(-75)·0
Δ = 189225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{189225}=435$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(435)-435}{2*-75}=\frac{-870}{-150} =5+4/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(435)+435}{2*-75}=\frac{0}{-150} =0 $

See similar equations:

| x+2(1.5-6)=16 | | 3w2=-17w-10 | | Y=b^2+7b-30 | | 7y–4=3y+12 | | /7y–4=3y+12 | | —42-6n=-30 | | (2x+3)+(2x+3)+2x=36 | | m÷5=25 | | 0.2(y-4)+0.08y=0.12y-0.2 | | 0.08(y-4)+0.18y=0.10y-1.2 | | 3=3-5x-3x | | 6t/9=45 | | 20x-7-18x+3=16x-9-14x+15 | | -7=8×5/6x | | 3(x-1)=9x-4-6x | | 5-5w=-5 | | 520-4.0x10^3(x)=x | | 6=-5(c+4)+10 | | n+(n+2)=-195 | | 6=-4u-18 | | 6=4u-18 | | -9=-15+y | | 5k^2-4=-16 | | 7x-45(5×3)=4-22×-33 | | X²+14x-79=0 | | 7x-16/6=-5 | | -8x-5(x+5)=-3(4x+5) | | 3(x-4)=9x-7-6x | | 79=n+4n-8+3n-1 | | 5z+3-2z=8+2z+1 | | 23=u+6 | | 10x^2+8x-22=0 |

Equations solver categories