7/3x-7/2=-3/2x-5

Simple and best practice solution for 7/3x-7/2=-3/2x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x-7/2=-3/2x-5 equation:



7/3x-7/2=-3/2x-5
We move all terms to the left:
7/3x-7/2-(-3/2x-5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x-5)!=0
x∈R
We get rid of parentheses
7/3x+3/2x+5-7/2=0
We calculate fractions
56x/24x^2+9x/24x^2+(-21x)/24x^2+5=0
We multiply all the terms by the denominator
56x+9x+(-21x)+5*24x^2=0
We add all the numbers together, and all the variables
65x+(-21x)+5*24x^2=0
Wy multiply elements
120x^2+65x+(-21x)=0
We get rid of parentheses
120x^2+65x-21x=0
We add all the numbers together, and all the variables
120x^2+44x=0
a = 120; b = 44; c = 0;
Δ = b2-4ac
Δ = 442-4·120·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1936}=44$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-44}{2*120}=\frac{-88}{240} =-11/30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+44}{2*120}=\frac{0}{240} =0 $

See similar equations:

| 10+ | | b+115+31=60 | | b+115+31=90 | | b+115+31=180 | | 25x*2=4 | | h=15.00+0.07 | | 10+4c=34 | | 0.08+0.4c=-2.12 | | 10+4c=35 | | 4x8=56 | | 6/t=48/88 | | 5/8x+1=-1/8x+10 | | 6x+12=8+6x | | y/3-2=2/3 | | x*(2x-6)=2*(4-3x-x^2) | | -4(5+3n)=-68 | | -7/3=1/3x | | 5/4(8p+12)+2P=51 | | 3(x+2)-5(2x+7)=-8 | | 13-10x+4=27 | | -3(x-5)+8=x+20+3x-15 | | 4(2x+5)+2x=10 | | 9a+6=20.2 | | p/12=56/84 | | 2(4w+8)=60 | | 14.25=x−19.15−4.91.3433.434 | | 23=18-5b | | 990+2.0+x=180 | | 3x+11=2(5x-3)+7 | | 3(m-62)=66 | | 6.5+1.8+x=180 | | t(10)=-20 |

Equations solver categories