If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/4p-3=2+4/8p
We move all terms to the left:
7/4p-3-(2+4/8p)=0
Domain of the equation: 4p!=0
p!=0/4
p!=0
p∈R
Domain of the equation: 8p)!=0We add all the numbers together, and all the variables
p!=0/1
p!=0
p∈R
7/4p-(4/8p+2)-3=0
We get rid of parentheses
7/4p-4/8p-2-3=0
We calculate fractions
56p/32p^2+(-16p)/32p^2-2-3=0
We add all the numbers together, and all the variables
56p/32p^2+(-16p)/32p^2-5=0
We multiply all the terms by the denominator
56p+(-16p)-5*32p^2=0
Wy multiply elements
-160p^2+56p+(-16p)=0
We get rid of parentheses
-160p^2+56p-16p=0
We add all the numbers together, and all the variables
-160p^2+40p=0
a = -160; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-160)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-160}=\frac{-80}{-320} =1/4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-160}=\frac{0}{-320} =0 $
| 2x+5=6+2(5x+11) | | -36-(16.89)t+(4.9)t^2=0 | | -8(t+92)=24 | | 6a=4(1/2a-8) | | -19.1y-4.05=0.08-18.4y | | (65)=78.5x-392.5 | | 80=37.77+0.25x | | 4x-8x+7=-13 | | 80+0.07x=30+0.80 | | -9x-30=-12x+6 | | 3/x+2-1=-5/2x+8 | | -6(-r+10)=-7r-(6-10r) | | 14b=182 | | 0(2y+2)-y=2(8y-8) | | (75)=78.5x-392.5 | | -6y=-18-6 | | 4x+1=-9x+16 | | 1/10y+2=16 | | -c-17=10c-9c+15 | | -3/2x-7/2=4/3x-7 | | d^2=71/2 | | -5(-3w+9)-4w=3(w-9)-8 | | (50)=78.5x-392.5 | | 6y-4y+4=20 | | 4/5a-29=15 | | 16s+35=-4s | | 4=-w+1 | | 6u-18=6 | | G=9m-0.17. | | (10)=78.5x-392.5 | | 18s-14=19s | | (2+4x)=52 |