If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/6x+1/12=3+5/18x
We move all terms to the left:
7/6x+1/12-(3+5/18x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 18x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
7/6x-(5/18x+3)+1/12=0
We get rid of parentheses
7/6x-5/18x-3+1/12=0
We calculate fractions
108x^2/1296x^2+1512x/1296x^2+(-360x)/1296x^2-3=0
We multiply all the terms by the denominator
108x^2+1512x+(-360x)-3*1296x^2=0
Wy multiply elements
108x^2-3888x^2+1512x+(-360x)=0
We get rid of parentheses
108x^2-3888x^2+1512x-360x=0
We add all the numbers together, and all the variables
-3780x^2+1152x=0
a = -3780; b = 1152; c = 0;
Δ = b2-4ac
Δ = 11522-4·(-3780)·0
Δ = 1327104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1327104}=1152$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1152)-1152}{2*-3780}=\frac{-2304}{-7560} =32/105 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1152)+1152}{2*-3780}=\frac{0}{-7560} =0 $
| -2x+8x-8=6(x-3)-5 | | M=2.5t+10 | | 5y=5y²-5+2+2y+3y²-1 | | √x²-3=x-1 | | 10x=12x-2 | | 68+5x=75.50 | | 43x-12-22x=14x-5 | | 16(4-3m)=96(-m/3)+1 | | 11w+14w-6+1=-3w+1-6 | | 82=2(1+3x)+4x | | x/2+(-21)=-13 | | 1.5x+5=11+2x | | 12c−4=14c-10 | | -4(p+6)-6=2(p-3) | | 1/3(3+9x)=7/4(23-12x) | | 4-(n-4)=(n-3) | | 14x+24=-4 | | 6(x-4)=4(x-1) | | V-3b=8 | | 44°(4x+6)°=90 | | 2/3+1x/6=5x/6+1/3 | | -3(-2r+2)-(2r+2)=12 | | 10-(n-10)=4(n-4) | | 5(x+4)=2(x+25) | | 4(1-3)-r+2r=5(3r-7)-9r | | -2(x+3)=4x+30 | | 3(x+9)=(4x-4) | | -9x+5=2x+16 | | 6x+3=32x+6 | | 2-2a=16 | | 3/4(8n+12)=3(n-3 | | 4(t-1)=11+1 |