7/6x+5/12=3+5/18x

Simple and best practice solution for 7/6x+5/12=3+5/18x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/6x+5/12=3+5/18x equation:



7/6x+5/12=3+5/18x
We move all terms to the left:
7/6x+5/12-(3+5/18x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 18x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/6x-(5/18x+3)+5/12=0
We get rid of parentheses
7/6x-5/18x-3+5/12=0
We calculate fractions
540x^2/1296x^2+1512x/1296x^2+(-360x)/1296x^2-3=0
We multiply all the terms by the denominator
540x^2+1512x+(-360x)-3*1296x^2=0
Wy multiply elements
540x^2-3888x^2+1512x+(-360x)=0
We get rid of parentheses
540x^2-3888x^2+1512x-360x=0
We add all the numbers together, and all the variables
-3348x^2+1152x=0
a = -3348; b = 1152; c = 0;
Δ = b2-4ac
Δ = 11522-4·(-3348)·0
Δ = 1327104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1327104}=1152$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1152)-1152}{2*-3348}=\frac{-2304}{-6696} =32/93 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1152)+1152}{2*-3348}=\frac{0}{-6696} =0 $

See similar equations:

| 2.2y=55 | | 1.2+y=55 | | -3(y-2)+5=7(y-4)-1 | | 27×x=1026 | | 9^2x=3^x^-3 | | 12x=10–2 | | 9x-3(x+2)=30 | | 20+(-3.5x)+(-1.5x)=10 | | 9^2x=3^x-3 | | 3^2x+1-26(3^x)=16 | | 2(4^x)-17(2^x)+8=0 | | (x-3)(3x²-15x+18)=0 | | 4x-10=-2x+2. | | x^2+12-2=0 | | 7x-4x+9=11 | | C=0.15p+11.5 | | (a+1)^2=0 | | 4^x+1-9.2^x2=0 | | 145=(2x+10)=(4x-3) | | 8x-2/3=5x+6/6+2 | | x²=3x-1 | | 2^x-3+2^x-1+2x=52 | | 5^x-1+5^x-3=26 | | 5^4x-3=1 | | 54x-3=1 | | 24x-15x^2=0 | | 6y-2yy=18 | | 10z+16=15 | | 7/2a=4/5 | | 14y+7=14 | | 15=x^2-5x+2 | | 4m=82m-1, |

Equations solver categories