7/6x-1/3=1/2x

Simple and best practice solution for 7/6x-1/3=1/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/6x-1/3=1/2x equation:



7/6x-1/3=1/2x
We move all terms to the left:
7/6x-1/3-(1/2x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/6x-(+1/2x)-1/3=0
We get rid of parentheses
7/6x-1/2x-1/3=0
We calculate fractions
(-24x^2)/108x^2+126x/108x^2+(-54x)/108x^2=0
We multiply all the terms by the denominator
(-24x^2)+126x+(-54x)=0
We get rid of parentheses
-24x^2+126x-54x=0
We add all the numbers together, and all the variables
-24x^2+72x=0
a = -24; b = 72; c = 0;
Δ = b2-4ac
Δ = 722-4·(-24)·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5184}=72$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-72}{2*-24}=\frac{-144}{-48} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+72}{2*-24}=\frac{0}{-48} =0 $

See similar equations:

| 5x=2(3x-2)+10 | | 5x−28=−8 | | 10x-92=50+10x | | 3p+10=7p–26 | | -7=x-6x+3 | | 2(-15x+11)=-3(-10-8x) | | 2x=2(x+10) | | 3/7x=9/21 | | 2(u-1)+4u=3(4-1)+7 | | 68x=816 | | 7x+14=2(x+16) | | 25-8c=-23 | | -3/2x=33 | | 80x-3=53+95x | | -(1-5x)=(2=x) | | h-25=270 | | 5v-11=44 | | -89x+7=7-89x | | y=5/6-10 | | 10q-9q+4=18 | | 8a-7a-a+3a=6 | | Y=-3^3+10x-4 | | -8x+9x=-7 | | (40+x)+0.1x=40(0.5)+0.1x | | 72=5x-8 | | 4(2x-(9))=3x+4 | | 10x+-19x+-14=4 | | 1+2+3+4+5+67+8+9=x | | 5x+6+90=180 | | 12(x+3)=24=12x | | 5(-9x+23)=-36(17-5x) | | x-29=34 |

Equations solver categories