7/6x-1/3x=5/18

Simple and best practice solution for 7/6x-1/3x=5/18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/6x-1/3x=5/18 equation:



7/6x-1/3x=5/18
We move all terms to the left:
7/6x-1/3x-(5/18)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
7/6x-1/3x-(+5/18)=0
We get rid of parentheses
7/6x-1/3x-5/18=0
We calculate fractions
(-270x^2)/324x^2+378x/324x^2+(-108x)/324x^2=0
We multiply all the terms by the denominator
(-270x^2)+378x+(-108x)=0
We get rid of parentheses
-270x^2+378x-108x=0
We add all the numbers together, and all the variables
-270x^2+270x=0
a = -270; b = 270; c = 0;
Δ = b2-4ac
Δ = 2702-4·(-270)·0
Δ = 72900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{72900}=270$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(270)-270}{2*-270}=\frac{-540}{-540} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(270)+270}{2*-270}=\frac{0}{-540} =0 $

See similar equations:

| 1-0.3x=0.23-4x | | 2x(1x8)=10 | | 9=p/2+1 | | 20w-19w-1=7 | | 2t+6+3t-6=180 | | 17.26=3.62(k+1)+6.4 | | n+4(2-7n)=8+3n | | g-87/5=2 | | 16k+6k+20=-2 | | 2−-2g=-4 | | -5c=-7−4c | | 9.6y-15.4=4.3y | | 92=h−-16 | | 10h=9h−9 | | -10k+9=-9k | | -2p+6p+-20=-12 | | 8+-4k=12 | | 17.92=1.4(f+4.4) | | 3(t+14)+-6.5=-15.5 | | 3/5(x-5/8)=1/12-x+7/8 | | -9−5u=-8u−6 | | 2(m+2)-10=4 | | (-x/5)+3=9 | | -6(8n-2)=12+4n | | -5z+15z=20 | | -52=4c+16 | | 10g-g-7=2 | | -3g=-9+6g | | 6−3w=-6 | | 4(z+4)-z=17 | | -6+2b=3b | | -32=8/7(3w-1)=3/14 |

Equations solver categories