If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/7x+1/3x=1+5/3x
We move all terms to the left:
7/7x+1/3x-(1+5/3x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
7/7x+1/3x-(5/3x+1)=0
We get rid of parentheses
7/7x+1/3x-5/3x-1=0
We calculate fractions
21x/21x^2+(-35x+1)/21x^2-1=0
We multiply all the terms by the denominator
21x+(-35x+1)-1*21x^2=0
Wy multiply elements
-21x^2+21x+(-35x+1)=0
We get rid of parentheses
-21x^2+21x-35x+1=0
We add all the numbers together, and all the variables
-21x^2-14x+1=0
a = -21; b = -14; c = +1;
Δ = b2-4ac
Δ = -142-4·(-21)·1
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{70}}{2*-21}=\frac{14-2\sqrt{70}}{-42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{70}}{2*-21}=\frac{14+2\sqrt{70}}{-42} $
| X-4y=17-y | | 2(9x+5)=18x+x | | -2=2x-7 | | -7.2(x–15.6)=9 | | 9x/3=3+x | | 5x+21+2x=180 | | 2(4-3x12=7x-5(2x-7 | | 12x-127=128-5x | | -84+3(4x)=24 | | 350-5x=5x | | -2=2x^2-7 | | 10x-90=-x+75 | | -8-7(x-8)=-5x+40 | | 7(x+5)=3(x-4) | | –7=√ 2x –9. | | 2(7+2x)=(1-x) | | (h+1)=5h−7 | | 36x=3(6+x) | | -6t=-2t+8 | | 9a+5=-4 | | 7−58z=−23 | | 1.7h=-12 | | 7u/5=-28 | | 2(8y)=1.65 | | 2^3x-4=8^x-1 | | -4/7k=-84 | | 7x-35=3x-12 | | (m-17)/5=18 | | 2(5x)=1.65 | | 2w+5w+10=380 | | 14=u/4+11 | | 3n=315·34 |