7/8*x=64

Simple and best practice solution for 7/8*x=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8*x=64 equation:



7/8*x=64
We move all terms to the left:
7/8*x-(64)=0
Domain of the equation: 8*x!=0
x!=0/1
x!=0
x∈R
We multiply all the terms by the denominator
-64*8*x+7=0
Wy multiply elements
-512x*x+7=0
Wy multiply elements
-512x^2+7=0
a = -512; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-512)·7
Δ = 14336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14336}=\sqrt{1024*14}=\sqrt{1024}*\sqrt{14}=32\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{14}}{2*-512}=\frac{0-32\sqrt{14}}{-1024} =-\frac{32\sqrt{14}}{-1024} =-\frac{\sqrt{14}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{14}}{2*-512}=\frac{0+32\sqrt{14}}{-1024} =\frac{32\sqrt{14}}{-1024} =\frac{\sqrt{14}}{-32} $

See similar equations:

| 12(x+3)=2(6x-5)+46 | | n=7n | | x^+12x+20=0 | | 66=(22/7)r^2 | | 4b+3b=8 | | 17x+2=5x+50 | | -2y=-y | | 1/4x-5/6=2/3 | | 8+5x=-7x+8 | | -7x-2=9x+94 | | 4x-32=-2x-10 | | x+x+.5x=1.5 | | 11x/2=75 | | 20-4t=100 | | x/4+9=2 | | x-4x-60=18x+28+4 | | 4/12=7/2w | | 7/12=7/2w | | 8x=12=4x | | X-0.10x=1333396.26 | | 6x^2+30x-8=0 | | -7b-16=4b+17 | | 18-x-8=9x-8x | | 4x-7(9/7x+15/7)=5 | | 2/3(y-3)=12 | | 2x/5-9=-33 | | x+.15x=80 | | 448=28b | | 0.6*x=1.5 | | 92=5k+4(20,k) | | 8(1-2y)=24y | | p=2.50(600-500R)-500 |

Equations solver categories