7/8b-33=3/4b+32

Simple and best practice solution for 7/8b-33=3/4b+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8b-33=3/4b+32 equation:



7/8b-33=3/4b+32
We move all terms to the left:
7/8b-33-(3/4b+32)=0
Domain of the equation: 8b!=0
b!=0/8
b!=0
b∈R
Domain of the equation: 4b+32)!=0
b∈R
We get rid of parentheses
7/8b-3/4b-32-33=0
We calculate fractions
28b/32b^2+(-24b)/32b^2-32-33=0
We add all the numbers together, and all the variables
28b/32b^2+(-24b)/32b^2-65=0
We multiply all the terms by the denominator
28b+(-24b)-65*32b^2=0
Wy multiply elements
-2080b^2+28b+(-24b)=0
We get rid of parentheses
-2080b^2+28b-24b=0
We add all the numbers together, and all the variables
-2080b^2+4b=0
a = -2080; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-2080)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-2080}=\frac{-8}{-4160} =1/520 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-2080}=\frac{0}{-4160} =0 $

See similar equations:

| 4x+7-5x+4=-1x+11 | | 16=2(3×-6)+x | | 3b-12=33b-132 | | 10b-25=7b+35 | | x-13=343 | | 3h=5=11 | | v+-12=19 | | x+31=58 | | 5×d=15 | | (5x/7)+93=19 | | -5x+8.2=-0.5 | | -50=(2-a)-12 | | (4x/6)+99=96 | | −2(−x+5)+5x+2=  2727 | | 27=(4+m)-5 | | x-28=30 | | 45=-17+x | | -3x+34x=40=0 | | -6y+7(1-y)¥=-4-(y-4) | | 1.5x=300,000 | | 9/14=51/2-1/7f | | 1.5x=300,000/x | | 6-6(x+8)+7x=4+9 | | 3/4=1/3+4h | | -1x+45=8x | | 22.5=16+2.4c | | 3x-10-2x=-2 | | 1.25(4m-10)=7.5 | | 29x+1=31x-1 | | 5x+3=11x-1 | | b^-2=0.25 | | 5.25s-2.01=-8.97 |

Equations solver categories