7/8b-4=-15/16b+1

Simple and best practice solution for 7/8b-4=-15/16b+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8b-4=-15/16b+1 equation:



7/8b-4=-15/16b+1
We move all terms to the left:
7/8b-4-(-15/16b+1)=0
Domain of the equation: 8b!=0
b!=0/8
b!=0
b∈R
Domain of the equation: 16b+1)!=0
b∈R
We get rid of parentheses
7/8b+15/16b-1-4=0
We calculate fractions
112b/128b^2+120b/128b^2-1-4=0
We add all the numbers together, and all the variables
112b/128b^2+120b/128b^2-5=0
We multiply all the terms by the denominator
112b+120b-5*128b^2=0
We add all the numbers together, and all the variables
232b-5*128b^2=0
Wy multiply elements
-640b^2+232b=0
a = -640; b = 232; c = 0;
Δ = b2-4ac
Δ = 2322-4·(-640)·0
Δ = 53824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{53824}=232$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(232)-232}{2*-640}=\frac{-464}{-1280} =29/80 $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(232)+232}{2*-640}=\frac{0}{-1280} =0 $

See similar equations:

| 8x+12=5x+9+2x+21 | | 5x+20+9x−92=80 | | -40=12x-4x | | (16t^2-72t-81)=0 | | 0.5=300x | | 3x−7(4+2x)=−x+2 | | 2^x=-2x+11 | | 0=(16t^2+72t-81) | | -23=x+(-20) | | 4v+6v=v | | 2–(7g–3)=–9 | | f×2.5=12.5 | | 10=-4x^+3x^2 | | 5=-2m+2 | | 3(x−2)=30+x−2−x+2 | | 9v+47=2(v+6) | | 4x+1=124x-5 | | -9a+(-1)=26 | | 0.3333s+14=26 | | -2x-91=x | | 15=3n+8 | | 14=x-8=x-6 | | ^(2)+22.4h=1837 | | 5x-14+3x-8=10 | | 10•q=4.0884 | | 7(t+1)=20 | | 4+6x=4x+24 | | 7(z+12)=98 | | 17=9c=19 | | (2x+5)=(3x-70) | | 5(3x+2)/2=1 | | 9x+4=72.5 |

Equations solver categories