If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/8k-4/5=7+1/9k
We move all terms to the left:
7/8k-4/5-(7+1/9k)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 9k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
7/8k-(1/9k+7)-4/5=0
We get rid of parentheses
7/8k-1/9k-7-4/5=0
We calculate fractions
(-2592k^2)/1800k^2+1575k/1800k^2+(-200k)/1800k^2-7=0
We multiply all the terms by the denominator
(-2592k^2)+1575k+(-200k)-7*1800k^2=0
Wy multiply elements
(-2592k^2)-12600k^2+1575k+(-200k)=0
We get rid of parentheses
-2592k^2-12600k^2+1575k-200k=0
We add all the numbers together, and all the variables
-15192k^2+1375k=0
a = -15192; b = 1375; c = 0;
Δ = b2-4ac
Δ = 13752-4·(-15192)·0
Δ = 1890625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1890625}=1375$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1375)-1375}{2*-15192}=\frac{-2750}{-30384} =1375/15192 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1375)+1375}{2*-15192}=\frac{0}{-30384} =0 $
| -j^2-9j-9=0 | | m/15+65=23 | | 5x2-51=-2x | | 5+-1x=-1x-(-1x)-(-1x)+8 | | (2x-15)(9x+14)=0 | | 4/3=11/k | | 88/40=22/x | | X^=6x-10 | | 3/2m+3/8=5/4+9/2m | | 5x2-51-2x=0 | | 2w2–4w–170=0 | | 0.5(n+4)−3=13 | | -47=-2x+7x-2 | | x/6-1=6 | | 3+6v+8v=3 | | 3(x+5)=x(2x-3) | | -2(3m-8)=89 | | 5(y+6)=-5(y-4) | | 2x+1–(2+x)-7=3x+7 | | 1+3x-5=-22 | | 16=5y-4y | | -2(3k-6)=-24+5k | | 2x+1=x/126 | | 2f-9-4=-33 | | 4y^2+8y+8=0 | | 10x-3*4=10x+2*3 | | -3(8+2a)=-21 | | 8(3-6b)+5=-25+6b | | --2|3m=-12 | | 5+-2x+-1x=-3x-(-1x)-(-1x)+8 | | 7r+2-7r=27 | | 3+2x=7-7x |