7/8n-1/2=3/16n+5

Simple and best practice solution for 7/8n-1/2=3/16n+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8n-1/2=3/16n+5 equation:



7/8n-1/2=3/16n+5
We move all terms to the left:
7/8n-1/2-(3/16n+5)=0
Domain of the equation: 8n!=0
n!=0/8
n!=0
n∈R
Domain of the equation: 16n+5)!=0
n∈R
We get rid of parentheses
7/8n-3/16n-5-1/2=0
We calculate fractions
(-128n^2)/512n^2+448n/512n^2+(-96n)/512n^2-5=0
We multiply all the terms by the denominator
(-128n^2)+448n+(-96n)-5*512n^2=0
Wy multiply elements
(-128n^2)-2560n^2+448n+(-96n)=0
We get rid of parentheses
-128n^2-2560n^2+448n-96n=0
We add all the numbers together, and all the variables
-2688n^2+352n=0
a = -2688; b = 352; c = 0;
Δ = b2-4ac
Δ = 3522-4·(-2688)·0
Δ = 123904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{123904}=352$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(352)-352}{2*-2688}=\frac{-704}{-5376} =11/84 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(352)+352}{2*-2688}=\frac{0}{-5376} =0 $

See similar equations:

| 2-|2x-2|=16 | | 141-y=240 | | i1066i=−1​ | | 0.5(16-x)=-12x-84 | | 0.35x=14 | | 1. 1.32y+0.02y=1.19+y | | 3n-16=20 | | 8r-20=r+15 | | 1180=2x+20 | | (3x-26)+(3x-10)=180 | | 3(2x-2.2)=-4x | | 1.1x=14 | | 5−2(y−5)=4y−8 | | x(x-5)-10=0 | | 6x+4x+-9=1 | | (x+9)+(2x+6)=180 | | 16=4+3*t+2 | | 20b-b2-64=0 | | 5x-15+3x=2+8x-16 | | -0.5x=0.75 | | --38=7w+17-12w | | 3.6=3c=1.2 | | 7a=126a=18 | | 2n-8=4(-8+2n) | | 7x-9+2x=3+9x-11 | | 3x+4=-2+4x | | 27-(x-5)=9x-8 | | -9(x-5)=-18 | | 5-2b=10 | | -7+2x-4x=x+5 | | 5q=319=13 | | -15=7p+3+10 |

Equations solver categories