7/8w+2=5/4w+1

Simple and best practice solution for 7/8w+2=5/4w+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8w+2=5/4w+1 equation:



7/8w+2=5/4w+1
We move all terms to the left:
7/8w+2-(5/4w+1)=0
Domain of the equation: 8w!=0
w!=0/8
w!=0
w∈R
Domain of the equation: 4w+1)!=0
w∈R
We get rid of parentheses
7/8w-5/4w-1+2=0
We calculate fractions
28w/32w^2+(-40w)/32w^2-1+2=0
We add all the numbers together, and all the variables
28w/32w^2+(-40w)/32w^2+1=0
We multiply all the terms by the denominator
28w+(-40w)+1*32w^2=0
Wy multiply elements
32w^2+28w+(-40w)=0
We get rid of parentheses
32w^2+28w-40w=0
We add all the numbers together, and all the variables
32w^2-12w=0
a = 32; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·32·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*32}=\frac{0}{64} =0 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*32}=\frac{24}{64} =3/8 $

See similar equations:

| 14x+20x-6+2=3x+2-6 | | -6+8=4x-2 | | -4.5m+8.4-5=1.5m+2 | | 56=13w-5w | | (5c-6)2=0 | | 8x+12=5x+24 | | 1.4y+.09y=1.49 | | 5(x+1)-9=4x+2 | | 56=3y+4y | | 2x^+16x-20=0 | | 2=a+7=9 | | 1/2(4x+12)+1/4(4x-8)=1/3(9x+27) | | 35x2-21x-7=0 | | 5x+7=4x+13 | | -5/a-3=5 | | 4-5x/5=2+5x/35-x/10 | | 3.9=1.4-0.7y | | 15+.75g=13+.5 | | 6x+24=4x+24 | | 15x-60=3(20-5x) | | 10x2=5x+1 | | -8y+6(y+6)=30 | | -1/3x-1=0 | | 2/3x-8/3+2=8 | | 7x-9=-3x+2 | | 2.5x^2-25x+60=0 | | 70u-u=-204 | | -7c=-31/4 | | n/7=n+3/5 | | 2(x-3)=-4(x+1) | | 5x/14-3/8=x/28 | | 2x(6x+4)=15 |

Equations solver categories