7/8x+1/2=3/16x+5

Simple and best practice solution for 7/8x+1/2=3/16x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x+1/2=3/16x+5 equation:



7/8x+1/2=3/16x+5
We move all terms to the left:
7/8x+1/2-(3/16x+5)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 16x+5)!=0
x∈R
We get rid of parentheses
7/8x-3/16x-5+1/2=0
We calculate fractions
128x^2/512x^2+448x/512x^2+(-96x)/512x^2-5=0
We multiply all the terms by the denominator
128x^2+448x+(-96x)-5*512x^2=0
Wy multiply elements
128x^2-2560x^2+448x+(-96x)=0
We get rid of parentheses
128x^2-2560x^2+448x-96x=0
We add all the numbers together, and all the variables
-2432x^2+352x=0
a = -2432; b = 352; c = 0;
Δ = b2-4ac
Δ = 3522-4·(-2432)·0
Δ = 123904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{123904}=352$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(352)-352}{2*-2432}=\frac{-704}{-4864} =11/76 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(352)+352}{2*-2432}=\frac{0}{-4864} =0 $

See similar equations:

| 2*n+15=5*n | | x2-3=0 | | -248-8x=92+12x | | y=4(y-7)−2 | | z-4126=20875 | | -2x-8x=3(x+1)+2(x-9) | | G(a)=4a-1 | | 2/x-3-1/x=4 | | -12=0.3n | | 3(3+-2y)=-5 | | 8x-34=6x+24 | | 0.64Xx=170 | | 21/b=-7 | | 9x+40=360 | | 2x^2-12x+17=1 | | -18+3x=11+2x | | 140+22+3x=180 | | 2/3x-1/6=3 | | 1x+6=4x | | 2(18+x)=10 | | 5(x-6)-6(x-5=x+5-(x-4) | | 14-2(3p+1)=4+p) | | 13f=11 | | 5(1+4v)=105 | | 2y+10=36 | | 1/x=9/2x-6 | | 3x~7=17 | | 9(-5)−6y=15 | | 3(a-6)-2(a-6)=6 | | 5(-7)+6y=13 | | 5+-13f=-14 | | 0.3x-0.9x-23=1 |

Equations solver categories