7/8x+1/2=3/16x-4

Simple and best practice solution for 7/8x+1/2=3/16x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x+1/2=3/16x-4 equation:



7/8x+1/2=3/16x-4
We move all terms to the left:
7/8x+1/2-(3/16x-4)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 16x-4)!=0
x∈R
We get rid of parentheses
7/8x-3/16x+4+1/2=0
We calculate fractions
128x^2/512x^2+448x/512x^2+(-96x)/512x^2+4=0
We multiply all the terms by the denominator
128x^2+448x+(-96x)+4*512x^2=0
Wy multiply elements
128x^2+2048x^2+448x+(-96x)=0
We get rid of parentheses
128x^2+2048x^2+448x-96x=0
We add all the numbers together, and all the variables
2176x^2+352x=0
a = 2176; b = 352; c = 0;
Δ = b2-4ac
Δ = 3522-4·2176·0
Δ = 123904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{123904}=352$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(352)-352}{2*2176}=\frac{-704}{4352} =-11/68 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(352)+352}{2*2176}=\frac{0}{4352} =0 $

See similar equations:

| 3x+1=5(x-2)+3 | | 3y+7-5y+6=2y+9 | | 0=10+6x-4.9x^2 | | ∠B=4x+38​∘​​ | | 2x-2=+1 | | 5x-2+x=6(x+3)-4x | | 2/3x-5=3/4x-8 | | x={-15,-6,-1} | | T=5s+4.03 | | -15=-(3n/5 | | j-88=12 | | 3/10+16x=4 | | 5x+-2=x+3 | | 10(b+3)+20=100 | | +y=+32 | | 17=5(x-4)+3 | | 18−m=6 | | 5(j-99)+-51=-76 | | 2/7r+12=-12 | | 72=4.5p | | -1=-4n-7n | | -10(w+11)=80 | | n5.7=171 | | 5y^2-1=-8y | | 1k=3k-2 | | 1/2+5x=x-3/2 | | 2400=300x | | 4k+(2k-1)-2(4-k)-7=0 | | 60=d+37 | | 5y^2+8y-1=0 | | 5v+19-2v=17+28v-5 | | 11x-3x+102=11x+42 |

Equations solver categories