7/8x+3/2=5/4x-3

Simple and best practice solution for 7/8x+3/2=5/4x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x+3/2=5/4x-3 equation:



7/8x+3/2=5/4x-3
We move all terms to the left:
7/8x+3/2-(5/4x-3)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 4x-3)!=0
x∈R
We get rid of parentheses
7/8x-5/4x+3+3/2=0
We calculate fractions
384x^2/128x^2+112x/128x^2+(-160x)/128x^2+3=0
We multiply all the terms by the denominator
384x^2+112x+(-160x)+3*128x^2=0
Wy multiply elements
384x^2+384x^2+112x+(-160x)=0
We get rid of parentheses
384x^2+384x^2+112x-160x=0
We add all the numbers together, and all the variables
768x^2-48x=0
a = 768; b = -48; c = 0;
Δ = b2-4ac
Δ = -482-4·768·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48}{2*768}=\frac{0}{1536} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48}{2*768}=\frac{96}{1536} =1/16 $

See similar equations:

| 7•10-58=2x-8 | | 4c/7-30/7=-2/7c | | 3j+8=50 | | 1-3r-4=2 | | 16x4+9=40x2 | | 5+2x=21/2x | | 10/2+2x=5/2x | | 5^-7x=25 | | 4(5b-3)^2+10(5b-3)-6=0 | | -6(x+9)=-11+6 | | 11^5x=1/121 | | 2t/9-6=-74/9 | | (4x-27)=(3x+14) | | -2+4x=6(x-5) | | 13-6x=2(5x-2) | | 99x=13-x | | 0.5t+.25t(t+16)=4+.75t | | 2n+24+3n=84 | | 4x=5/6-13 | | (D^4+5D^2+4)y=0 | | 7/2x+1/2x=16/1/2x+9/2x | | 5/4-7n=2 | | 78-7/8(b)-4b=0 | | 11x-65=11x-65 | | 7p/10-4=-2p/5-9 | | 78-7/8b-4b=0 | | -6x-1=-1-6x | | 305=16x^2 | | 90x/100=180 | | T(t)=(6t/t^2+1)+98.6 | | 11x-29=60 | | 30+5n=7n |

Equations solver categories