7/8x+8=216;x=1823

Simple and best practice solution for 7/8x+8=216;x=1823 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x+8=216;x=1823 equation:



7/8x+8=216x=1823
We move all terms to the left:
7/8x+8-(216x)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
-216x+7/8x+8=0
We multiply all the terms by the denominator
-216x*8x+8*8x+7=0
Wy multiply elements
-1728x^2+64x+7=0
a = -1728; b = 64; c = +7;
Δ = b2-4ac
Δ = 642-4·(-1728)·7
Δ = 52480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52480}=\sqrt{256*205}=\sqrt{256}*\sqrt{205}=16\sqrt{205}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{205}}{2*-1728}=\frac{-64-16\sqrt{205}}{-3456} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{205}}{2*-1728}=\frac{-64+16\sqrt{205}}{-3456} $

See similar equations:

| 20x=-300 | | 8y+52=164 | | -24-2m=-32 | | E=3xx(4xx)+(-x)x(-2)+5x4x+5x(-2) | | 7/8x+8=216;x= | | Y-3=2(x-0) | | 4q-3q+5=13 | | 2x+22=9x-6 | | 2(25x+50)=400 | | 14+12=-15x+2x-2 | | 2(25x-50)=400 | | 3/4(x-8=12 | | y=0.23(9)+4.1 | | 2b^=66 | | y=0.23(9)+4.2 | | 8-3x=2x/5-1/10 | | 0=4x-5/2x-1 | | M(m-3)=40 | | 3/2y=(0,1) | | F(x)=2x2+3x+1 | | (e-5)/9=(e-25)/5 | | 2.5x+7.2=60.1 | | d4=-5 | | -4(x-5)-3x=5-7(x-3) | | 5^3x-7=21.23 | | 3x+9-6x(6-8)=7(7+3) | | 7x+45=3x+3 | | -35=-7s | | 5y-8-2y=16 | | 26=x/5-11 | | 3=-3m | | 31-14x=-5(6x+5)-5(-8-3x) |

Equations solver categories