7/8x-1/2=3/16x=5

Simple and best practice solution for 7/8x-1/2=3/16x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x-1/2=3/16x=5 equation:



7/8x-1/2=3/16x=5
We move all terms to the left:
7/8x-1/2-(3/16x)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 16x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/8x-(+3/16x)-1/2=0
We get rid of parentheses
7/8x-3/16x-1/2=0
We calculate fractions
(-128x^2)/512x^2+448x/512x^2+(-96x)/512x^2=0
We multiply all the terms by the denominator
(-128x^2)+448x+(-96x)=0
We get rid of parentheses
-128x^2+448x-96x=0
We add all the numbers together, and all the variables
-128x^2+352x=0
a = -128; b = 352; c = 0;
Δ = b2-4ac
Δ = 3522-4·(-128)·0
Δ = 123904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{123904}=352$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(352)-352}{2*-128}=\frac{-704}{-256} =2+3/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(352)+352}{2*-128}=\frac{0}{-256} =0 $

See similar equations:

| x2+12x+36=75 | | 45+9/4r=-45 | | m+17=2.8 | | 12=3(d+6) | | x2-18x+81=24 | | Y-x+5=20-4x | | g+12=64 | | 7(2x-4)+2=3x+7+11x | | -1+2-x=x-8+(-x)= | | 5x2+245=5 | | 5+2(x-4)=4x+7= | | P(x)=3+14 | | 16/17=x/100 | | 2x^-12x=-18 | | 4h+3h=10 | | 3=15q+18 | | a(8a-a)=15 | | x^+4x=-3 | | -5p=-11-6p | | -y=-y+8 | | .8x=100 | | 8(a+8)=15 | | z+9z=20 | | 2(6x+2)=2x-16 | | Y=6y=49 | | x^2=32+1/2x | | 18=-5b-18 | | -3(3n+6)=-6n+6 | | -3(-3x-5)=15 | | -5x+6-6(x-1)=-(4x-3)-6x+6 | | 8(4x−4)=−5x−32 | | 1+5x+2x=64 |

Equations solver categories