If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/8x-1/4+3/4x=1/16=x
We move all terms to the left:
7/8x-1/4+3/4x-(1/16)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
7/8x+3/4x-1/4-(+1/16)=0
We get rid of parentheses
7/8x+3/4x-1/4-1/16=0
We calculate fractions
(-512x^2)/8192x^2+7168x/8192x^2+384x/8192x^2+(-128x)/8192x^2=0
We multiply all the terms by the denominator
(-512x^2)+7168x+384x+(-128x)=0
We add all the numbers together, and all the variables
(-512x^2)+7552x+(-128x)=0
We get rid of parentheses
-512x^2+7552x-128x=0
We add all the numbers together, and all the variables
-512x^2+7424x=0
a = -512; b = 7424; c = 0;
Δ = b2-4ac
Δ = 74242-4·(-512)·0
Δ = 55115776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{55115776}=7424$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7424)-7424}{2*-512}=\frac{-14848}{-1024} =14+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7424)+7424}{2*-512}=\frac{0}{-1024} =0 $
| 75+50x=25+75x= | | (800/x)=10 | | q+-11.4=0.4 | | h+2.7=19.1 | | 2−2s=4/3s+13 | | (x/200)=10 | | w/3=2.45 | | 3x-4=5×+20 | | 9=j/25 | | -8=-5+w | | 24=-6(m+1)-18 | | -10=2(x-2)-4x | | (3x)^(2/3)=16 | | –8+r=–12 | | 6(y+2)−12=72 | | 1/7=24/s+21 | | -3(k+4)=6 | | 3+2y=7y= | | 3(h+-10)=-18 | | 3/8=y/y-20 | | 8x+2=26,4x-6=-26 | | u+5/2=-4 | | u+5/2= -4 | | -(y+-3)=5 | | X+2(5x-3)=19 | | 2x-1+5x+7=8-3x+6+x | | 3/4v=1/12+2/3v | | 3-(x+4)=2x-7 | | -9=4X2+16x-9 | | 3−6c=-3c | | -5q+16=-54 | | 6^5x=10 |