7/8y-4=15/16y+1

Simple and best practice solution for 7/8y-4=15/16y+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8y-4=15/16y+1 equation:



7/8y-4=15/16y+1
We move all terms to the left:
7/8y-4-(15/16y+1)=0
Domain of the equation: 8y!=0
y!=0/8
y!=0
y∈R
Domain of the equation: 16y+1)!=0
y∈R
We get rid of parentheses
7/8y-15/16y-1-4=0
We calculate fractions
112y/128y^2+(-120y)/128y^2-1-4=0
We add all the numbers together, and all the variables
112y/128y^2+(-120y)/128y^2-5=0
We multiply all the terms by the denominator
112y+(-120y)-5*128y^2=0
Wy multiply elements
-640y^2+112y+(-120y)=0
We get rid of parentheses
-640y^2+112y-120y=0
We add all the numbers together, and all the variables
-640y^2-8y=0
a = -640; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-640)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-640}=\frac{0}{-1280} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-640}=\frac{16}{-1280} =-1/80 $

See similar equations:

| 3n+50+10n=180 | | 24p^2+28p-20=0 | | 3y+6=5y-10=2y+4 | | 4(7-5x)=28 | | u/8+11.4=-1.4 | | 0.75/(x+1)=x | | -4=y/8+6 | | C=1.15(24.95)m | | 3-9(x=1)=3x+3(x-7) | | 4a+6=15 | | 5(x-8)=3x-8 | | (2x/x-3)-(6/x)=18/(x^2-3x) | | 2m^2+8-12=0 | | 7m-6=-14+6m | | -65.376=7.2(9c | | 18+4x=6x | | (2x+8)=22 | | 6(x+6)=4x+10 | | 9y=5y+9 | | (16x+3)=(20x-25) | | 2x-18=46 | | f(×)=800(0.85)× | | f(×)=800(0.85)* | | Y=13.73+-0.31x | | 140+145+115+120+130+128+x=900 | | 2a=(a-5)+80 | | x-3^2=x-5 | | 130+125+92+140+120+x=720 | | 8/p=9/7​ | | 3(x+2)+6x+4=28 | | F(×)=2.3^-x+1 | | 162=7x-10 |

Equations solver categories