7/8z-1=1/25z

Simple and best practice solution for 7/8z-1=1/25z equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8z-1=1/25z equation:



7/8z-1=1/25z
We move all terms to the left:
7/8z-1-(1/25z)=0
Domain of the equation: 8z!=0
z!=0/8
z!=0
z∈R
Domain of the equation: 25z)!=0
z!=0/1
z!=0
z∈R
We add all the numbers together, and all the variables
7/8z-(+1/25z)-1=0
We get rid of parentheses
7/8z-1/25z-1=0
We calculate fractions
175z/200z^2+(-8z)/200z^2-1=0
We multiply all the terms by the denominator
175z+(-8z)-1*200z^2=0
Wy multiply elements
-200z^2+175z+(-8z)=0
We get rid of parentheses
-200z^2+175z-8z=0
We add all the numbers together, and all the variables
-200z^2+167z=0
a = -200; b = 167; c = 0;
Δ = b2-4ac
Δ = 1672-4·(-200)·0
Δ = 27889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{27889}=167$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(167)-167}{2*-200}=\frac{-334}{-400} =167/200 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(167)+167}{2*-200}=\frac{0}{-400} =0 $

See similar equations:

| 12345678/12345678x=1234567890987654321 | | 3x-32=3x+28 | | 0=x^2+30x-445 | | 3x-32=3x=28 | | H(x)=10x+2 | | 3s^2-14=19s | | 8/3x-4/3=12 | | 1/27=3^x-2 | | (3d+2)+(d+5)=30 | | 3.5=45n | | n^2-16n=8 | | 6(t+10)+4=12t-5 | | 8x+10=6x-34 | | 2x+2=1x=1 | | 2/3+5=20–b | | x=5x=+7 | | 8x+13+x+14=90 | | 1/2=3^x-2 | | 11(6x-5)=40 | | 0=-16t^2-22t+112 | | (2x+4)(x-7)=0 | | 3x^2-8x+17=20 | | 6x^2+1x=0 | | 36+x^2-12x=0 | | 2^x(4x-1)=11 | | 17.05+d=23.10 | | 0.75(0.5−6c)=(0.375+4.5c) | | -1x-10=-3x-8 | | 2/x-2=4/x+2 | | e+(-10)=34 | | 3k+24+k+5=37 | | 70=4w+10 |

Equations solver categories