7/y=0.4;y

Simple and best practice solution for 7/y=0.4;y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/y=0.4;y equation:



7/y=0.4y
We move all terms to the left:
7/y-(0.4y)=0
Domain of the equation: y!=0
y∈R
We add all the numbers together, and all the variables
7/y-(+0.4y)=0
We get rid of parentheses
7/y-0.4y=0
We multiply all the terms by the denominator
-(0.4y)*y+7=0
We add all the numbers together, and all the variables
-(+0.4y)*y+7=0
We multiply parentheses
-0y^2+7=0
We add all the numbers together, and all the variables
-1y^2+7=0
a = -1; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-1)·7
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*-1}=\frac{0-2\sqrt{7}}{-2} =-\frac{2\sqrt{7}}{-2} =-\frac{\sqrt{7}}{-1} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*-1}=\frac{0+2\sqrt{7}}{-2} =\frac{2\sqrt{7}}{-2} =\frac{\sqrt{7}}{-1} $

See similar equations:

| 7/y=0.4;y | | 7/y=0.4;y | | 12.9+x=-14 | | 7/y=0.4;y | | 12.9+x=-14 | | 3(c+2)+4=10+3c | | 0.32(5x-2)-1.3=0.8x+5.7 | | 7/y=0.4;y | | 7/y=0.4;y | | x/7=0.4;x | | 2x+12/x=-10 | | 2x+12/x=-10 | | (5x-32)89=39 | | (5x-32)89=39 | | (5x-32)89=39 | | 2m=5=13 | | 2m=5=13 | | (5x-32)x3x=89 | | (5x-32)x3x=89 | | (5x-32)x3x=89 | | 19x^2=13x | | 19x^2=13x | | −12x+2=−9x+5 | | −12x+2=−9x+5 | | −12x+2=−9x+5 | | 5y−8=3y+4 | | 5y−8=3y+4 | | −12x+2=-9x+5− | | −12x+2=-9x+5− | | 19.5=0.5y | | 4r^2+2=0 | | -9+-2h=-15 |

Equations solver categories