71/2x-1/2x=33/4x+39

Simple and best practice solution for 71/2x-1/2x=33/4x+39 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 71/2x-1/2x=33/4x+39 equation:



71/2x-1/2x=33/4x+39
We move all terms to the left:
71/2x-1/2x-(33/4x+39)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+39)!=0
x∈R
We get rid of parentheses
71/2x-1/2x-33/4x-39=0
We calculate fractions
(-4x+71)/8x^2+(-66x)/8x^2-39=0
We multiply all the terms by the denominator
(-4x+71)+(-66x)-39*8x^2=0
Wy multiply elements
-312x^2+(-4x+71)+(-66x)=0
We get rid of parentheses
-312x^2-4x-66x+71=0
We add all the numbers together, and all the variables
-312x^2-70x+71=0
a = -312; b = -70; c = +71;
Δ = b2-4ac
Δ = -702-4·(-312)·71
Δ = 93508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{93508}=\sqrt{4*23377}=\sqrt{4}*\sqrt{23377}=2\sqrt{23377}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-2\sqrt{23377}}{2*-312}=\frac{70-2\sqrt{23377}}{-624} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+2\sqrt{23377}}{2*-312}=\frac{70+2\sqrt{23377}}{-624} $

See similar equations:

| a=0.0-15.0/4.04 | | -b/7+14=0 | | 15=-11*b+4 | | -7(-4x-5)=31 | | 3|2.5x-19|=35 | | 2m-5-5=-14 | | 7a-16=9+8a+4a | | 6a=3a+20 | | 8-3a-a=-6a-8 | | 172=32-y | | -7y+3+10y=2-18y-6 | | 9y-72=y+48 | | 4.9x^2-5x-1.2=0 | | X2-20=3x-10 | | 2x+12=3x-10 | | 6x-5=17-5 | | 5x+20=2x+380 | | 53=4y+17 | | 21=207-x | | 3/4(200+x)=200+4/7x | | 20q^2+53q+18=0 | | Y(y+8)=16(y-1)=7 | | 8/u+2=6 | | -1+4g=-8+5g | | 2y+12=46 | | 12x+10=17x+0 | | X/5+x/10-x/6= | | -v+251=129 | | x/5+10=-14 | | -2{2x-3}=2x | | 12x=10=17x=0 | | i=−1​ |

Equations solver categories