72/2p=3p

Simple and best practice solution for 72/2p=3p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 72/2p=3p equation:



72/2p=3p
We move all terms to the left:
72/2p-(3p)=0
Domain of the equation: 2p!=0
p!=0/2
p!=0
p∈R
We add all the numbers together, and all the variables
-3p+72/2p=0
We multiply all the terms by the denominator
-3p*2p+72=0
Wy multiply elements
-6p^2+72=0
a = -6; b = 0; c = +72;
Δ = b2-4ac
Δ = 02-4·(-6)·72
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*-6}=\frac{0-24\sqrt{3}}{-12} =-\frac{24\sqrt{3}}{-12} =-\frac{2\sqrt{3}}{-1} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*-6}=\frac{0+24\sqrt{3}}{-12} =\frac{24\sqrt{3}}{-12} =\frac{2\sqrt{3}}{-1} $

See similar equations:

| (4x+2)*(2x+3)=30 | | x÷2-4=5 | | s/4.5=6.2 | | s/4.5=6.2 | | s/4.5=6.2 | | 50x-3=-100 | | n^2-15^2=216 | | 5(x÷8)=17x÷4 | | 5(x÷8)=17x÷4 | | 2p2-11p=0 | | 5d+16=9 | | 130=n-12 | | -17=n+6 | | 2(2x-1,2)=1,6 | | 2(2x-1,2)=1,6 | | 2(2x-1,2)=1,6 | | 2(2x-1,2)=1,6 | | x^2+10=x*7 | | x^2+10=x*7 | | x^2+10=x*7 | | x^2+10=x*7 | | x^2+10=x*7 | | 3(-3x+4,3)=3,9 | | 4w+12w+9=4w+14w+12 | | 4w+12w+9=4w+14w+12 | | 4w+12w+9=4w+14w+12 | | 8x+9=7x+11 | | 8x+9=7x+11 | | 8x+9=7x+11 | | 18a=-108 | | X=0,57y | | 2(3x+4)=2x-12 |

Equations solver categories