720*1/x+1.25x=718.75

Simple and best practice solution for 720*1/x+1.25x=718.75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 720*1/x+1.25x=718.75 equation:



720*1/x+1.25x=718.75
We move all terms to the left:
720*1/x+1.25x-(718.75)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
1.25x+720*1/x-718.75=0
We multiply all the terms by the denominator
(1.25x)*x-(718.75)*x+720*1=0
We add all the numbers together, and all the variables
(+1.25x)*x-(718.75)*x+720*1=0
We add all the numbers together, and all the variables
(+1.25x)*x-(718.75)*x+720=0
We multiply parentheses
x^2-718.75x+720=0
a = 1; b = -718.75; c = +720;
Δ = b2-4ac
Δ = -718.752-4·1·720
Δ = 513721.5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-718.75)-\sqrt{513721.5625}}{2*1}=\frac{718.75-\sqrt{513721.5625}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-718.75)+\sqrt{513721.5625}}{2*1}=\frac{718.75+\sqrt{513721.5625}}{2} $

See similar equations:

| -1-k=1 | | 0.6(x+38000)=51000 | | 5(-4x-2)=-210 | | 5/8(20.8)+0y=13 | | 5/8(20.8)+y0=13 | | 12x-8-(5x+2)=67 | | 6=u/3 | | 6(-9+4x)=-126 | | W(x+3)+5x=34 | | 3x+27=4x+12 | | 2(1x-10)=2 | | -2(7x-7)=-42 | | 3x+16=4x-2 | | 7x-9=106 | | 4(2-x)=-32 | | 6x+4=184 | | 4+5b=1 | | 2-2c=2 | | (2x-3)(x-3)=14 | | 5m-5+3m=7+15m+9 | | -8.6=-2.2+y/4 | | A=7/6(h-79) | | 3(-4+0,33x)=0 | | 4+7p=9+4p | | 10x+18=11x+7 | | u/8+6.7=6.1 | | 6(5x+2)=282 | | 3-2h=3 | | 18.75x+150=600 | | 2p=(A-3)/2 | | 3n2-2n=0 | | 4(7-6x)=220 |

Equations solver categories