720*1/x-1.25x=718.75

Simple and best practice solution for 720*1/x-1.25x=718.75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 720*1/x-1.25x=718.75 equation:



720*1/x-1.25x=718.75
We move all terms to the left:
720*1/x-1.25x-(718.75)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
-1.25x+720*1/x-718.75=0
We multiply all the terms by the denominator
-(1.25x)*x-(718.75)*x+720*1=0
We add all the numbers together, and all the variables
-(+1.25x)*x-(718.75)*x+720*1=0
We add all the numbers together, and all the variables
-(+1.25x)*x-(718.75)*x+720=0
We multiply parentheses
-x^2-718.75x+720=0
We add all the numbers together, and all the variables
-1x^2-718.75x+720=0
a = -1; b = -718.75; c = +720;
Δ = b2-4ac
Δ = -718.752-4·(-1)·720
Δ = 519481.5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-718.75)-\sqrt{519481.5625}}{2*-1}=\frac{718.75-\sqrt{519481.5625}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-718.75)+\sqrt{519481.5625}}{2*-1}=\frac{718.75+\sqrt{519481.5625}}{-2} $

See similar equations:

| 13j-8=-3 | | 7+3r=67 | | 7x^2-242=0 | | 147=-3x-3(-5x-5) | | 7=-8r | | -5b-7=93 | | X^4+675=84x^2 | | X-67=-11(2x+4) | | -38=2n-6 | | -2+13.8x=-8x-(6x+1) | | I5x=-9 | | x+.06x=50.97 | | I5x=12 | | v+2.63=4.36 | | 9-8a=1 | | 15d-4=19 | | 4(-1x-5)=-4 | | 6x+23=7x+15 | | 10m+5=35 | | 720*1/x+1.25x=718.75 | | -1-k=1 | | 0.6(x+38000)=51000 | | 5(-4x-2)=-210 | | 5/8(20.8)+0y=13 | | 5/8(20.8)+y0=13 | | 12x-8-(5x+2)=67 | | 6=u/3 | | 6(-9+4x)=-126 | | W(x+3)+5x=34 | | 3x+27=4x+12 | | 2(1x-10)=2 | | -2(7x-7)=-42 |

Equations solver categories