If it's not what You are looking for type in the equation solver your own equation and let us solve it.
72x^2=24
We move all terms to the left:
72x^2-(24)=0
a = 72; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·72·(-24)
Δ = 6912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6912}=\sqrt{2304*3}=\sqrt{2304}*\sqrt{3}=48\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{3}}{2*72}=\frac{0-48\sqrt{3}}{144} =-\frac{48\sqrt{3}}{144} =-\frac{\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{3}}{2*72}=\frac{0+48\sqrt{3}}{144} =\frac{48\sqrt{3}}{144} =\frac{\sqrt{3}}{3} $
| 8u+7u3u=-18 | | h-11=16 | | -19p=57 | | 13x+5+21x+3=176 | | (3x-1)+(3x-3)=3x+8 | | 8.4/h=11.2/6.8 | | -2x-2(1x+27)=-26 | | -5-3x=-56 | | v/11=3 | | a+5−4=−3 | | x 9=8 | | 3x-7x+83=5x-8x+4 | | 5=w+13 | | 3+5m=14+2m | | 7(x–3)=3(x+2) | | 8w+23=5w+-4 | | 5y-2y-2y-y+2y=16 | | -2x-2(1x+27=-26 | | 32-2z=-8z+-4 | | 16k-15=`13 | | 4(2x+7)=5x-8 | | −1/2x+6=23 | | 87+6k=-7k-4 | | 26*6x=x | | -1/2=-5/19h | | x+22=x+44 | | 15k-13=13k | | 3(2x-10)=-33+4x+1 | | 3y+36=-3y | | ⅗y=6+7y | | 4-4x=-8x-8 | | -1-7(6r+3)=190 |