If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 750 + 22(n + -12) = 650 + 30n(n + -10) Reorder the terms: 750 + 22(-12 + n) = 650 + 30n(n + -10) 750 + (-12 * 22 + n * 22) = 650 + 30n(n + -10) 750 + (-264 + 22n) = 650 + 30n(n + -10) Combine like terms: 750 + -264 = 486 486 + 22n = 650 + 30n(n + -10) Reorder the terms: 486 + 22n = 650 + 30n(-10 + n) 486 + 22n = 650 + (-10 * 30n + n * 30n) 486 + 22n = 650 + (-300n + 30n2) Solving 486 + 22n = 650 + -300n + 30n2 Solving for variable 'n'. Reorder the terms: 486 + -650 + 22n + 300n + -30n2 = 650 + -300n + 30n2 + -650 + 300n + -30n2 Combine like terms: 486 + -650 = -164 -164 + 22n + 300n + -30n2 = 650 + -300n + 30n2 + -650 + 300n + -30n2 Combine like terms: 22n + 300n = 322n -164 + 322n + -30n2 = 650 + -300n + 30n2 + -650 + 300n + -30n2 Reorder the terms: -164 + 322n + -30n2 = 650 + -650 + -300n + 300n + 30n2 + -30n2 Combine like terms: 650 + -650 = 0 -164 + 322n + -30n2 = 0 + -300n + 300n + 30n2 + -30n2 -164 + 322n + -30n2 = -300n + 300n + 30n2 + -30n2 Combine like terms: -300n + 300n = 0 -164 + 322n + -30n2 = 0 + 30n2 + -30n2 -164 + 322n + -30n2 = 30n2 + -30n2 Combine like terms: 30n2 + -30n2 = 0 -164 + 322n + -30n2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(-82 + 161n + -15n2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-82 + 161n + -15n2)' equal to zero and attempt to solve: Simplifying -82 + 161n + -15n2 = 0 Solving -82 + 161n + -15n2 = 0 Begin completing the square. Divide all terms by -15 the coefficient of the squared term: Divide each side by '-15'. 5.466666667 + -10.73333333n + n2 = 0 Move the constant term to the right: Add '-5.466666667' to each side of the equation. 5.466666667 + -10.73333333n + -5.466666667 + n2 = 0 + -5.466666667 Reorder the terms: 5.466666667 + -5.466666667 + -10.73333333n + n2 = 0 + -5.466666667 Combine like terms: 5.466666667 + -5.466666667 = 0.000000000 0.000000000 + -10.73333333n + n2 = 0 + -5.466666667 -10.73333333n + n2 = 0 + -5.466666667 Combine like terms: 0 + -5.466666667 = -5.466666667 -10.73333333n + n2 = -5.466666667 The n term is -10.73333333n. Take half its coefficient (-5.366666665). Square it (28.80111109) and add it to both sides. Add '28.80111109' to each side of the equation. -10.73333333n + 28.80111109 + n2 = -5.466666667 + 28.80111109 Reorder the terms: 28.80111109 + -10.73333333n + n2 = -5.466666667 + 28.80111109 Combine like terms: -5.466666667 + 28.80111109 = 23.334444423 28.80111109 + -10.73333333n + n2 = 23.334444423 Factor a perfect square on the left side: (n + -5.366666665)(n + -5.366666665) = 23.334444423 Calculate the square root of the right side: 4.830573923 Break this problem into two subproblems by setting (n + -5.366666665) equal to 4.830573923 and -4.830573923.Subproblem 1
n + -5.366666665 = 4.830573923 Simplifying n + -5.366666665 = 4.830573923 Reorder the terms: -5.366666665 + n = 4.830573923 Solving -5.366666665 + n = 4.830573923 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '5.366666665' to each side of the equation. -5.366666665 + 5.366666665 + n = 4.830573923 + 5.366666665 Combine like terms: -5.366666665 + 5.366666665 = 0.000000000 0.000000000 + n = 4.830573923 + 5.366666665 n = 4.830573923 + 5.366666665 Combine like terms: 4.830573923 + 5.366666665 = 10.197240588 n = 10.197240588 Simplifying n = 10.197240588Subproblem 2
n + -5.366666665 = -4.830573923 Simplifying n + -5.366666665 = -4.830573923 Reorder the terms: -5.366666665 + n = -4.830573923 Solving -5.366666665 + n = -4.830573923 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '5.366666665' to each side of the equation. -5.366666665 + 5.366666665 + n = -4.830573923 + 5.366666665 Combine like terms: -5.366666665 + 5.366666665 = 0.000000000 0.000000000 + n = -4.830573923 + 5.366666665 n = -4.830573923 + 5.366666665 Combine like terms: -4.830573923 + 5.366666665 = 0.536092742 n = 0.536092742 Simplifying n = 0.536092742Solution
The solution to the problem is based on the solutions from the subproblems. n = {10.197240588, 0.536092742}Solution
n = {10.197240588, 0.536092742}
| 3a+a=12 | | 33+0.20x=127 | | 7p+2t*s=n | | (7x/1-3/1)+77+50=180 | | 5x–3=3(x+7)+3x | | 100bb=0.50 | | 6n+4n+20=5n-15 | | 4-.40x=.20x-8 | | 6/4*x=1 | | 3X+4=-2x+9 | | -7w-84 | | 6y^3-28y^2-98y=0 | | -4-7=-6+x | | -16t^2+32t+78 | | 6x^2+11x-72 | | 15x^4-11x^22+2=0 | | 6(x+5)=4x+23 | | 1+15-7x-5 | | 4X+6=5X+2 | | 6/4 x = 1 | | 10x^2+26x-12 | | 6/4x =1 | | 6y^3-28y^3-98y=0 | | b=0.50+100 | | t-8=-25 | | 8x^3/4 | | 7x+4=21x-972+10 | | 6x+3y=-2 | | 3w+19=7 | | 30x^2-157x+49=0 | | 4r+36/16=5r-60/5 | | 6x-3(4x+7)=6x-(2x+21) |