If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 750 = 3x(x + -5)(x + -5) Reorder the terms: 750 = 3x(-5 + x)(x + -5) Reorder the terms: 750 = 3x(-5 + x)(-5 + x) Multiply (-5 + x) * (-5 + x) 750 = 3x(-5(-5 + x) + x(-5 + x)) 750 = 3x((-5 * -5 + x * -5) + x(-5 + x)) 750 = 3x((25 + -5x) + x(-5 + x)) 750 = 3x(25 + -5x + (-5 * x + x * x)) 750 = 3x(25 + -5x + (-5x + x2)) Combine like terms: -5x + -5x = -10x 750 = 3x(25 + -10x + x2) 750 = (25 * 3x + -10x * 3x + x2 * 3x) 750 = (75x + -30x2 + 3x3) Solving 750 = 75x + -30x2 + 3x3 Solving for variable 'x'. Reorder the terms: 750 + -75x + 30x2 + -3x3 = 75x + -75x + -30x2 + 30x2 + 3x3 + -3x3 Combine like terms: 75x + -75x = 0 750 + -75x + 30x2 + -3x3 = 0 + -30x2 + 30x2 + 3x3 + -3x3 750 + -75x + 30x2 + -3x3 = -30x2 + 30x2 + 3x3 + -3x3 Combine like terms: -30x2 + 30x2 = 0 750 + -75x + 30x2 + -3x3 = 0 + 3x3 + -3x3 750 + -75x + 30x2 + -3x3 = 3x3 + -3x3 Combine like terms: 3x3 + -3x3 = 0 750 + -75x + 30x2 + -3x3 = 0 Factor out the Greatest Common Factor (GCF), '3'. 3(250 + -25x + 10x2 + -1x3) = 0 Ignore the factor 3.Subproblem 1
Set the factor '(250 + -25x + 10x2 + -1x3)' equal to zero and attempt to solve: Simplifying 250 + -25x + 10x2 + -1x3 = 0 Solving 250 + -25x + 10x2 + -1x3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| s-1.5=5.9 | | -201=m-41 | | 4x-5=3(x-1)-6 | | 6*5-8*4+(-24)= | | -7(2)(-1)(-1)= | | y^2-72y+12=0 | | x(3x)-70=-5 | | y=t^3-3t+1 | | -5x+2y=4+(48) | | 5m^2+2m+5=0 | | 5m+12=2(2x-15) | | 9x+12=4y | | (8.163*(cos(x)))+(50*(sin(x)))=27.784 | | 2.7=-9p | | 2d-1=-4 | | 3x-4+1=0 | | 15x^2-22x-56=0 | | 4x+12-8x=-6(x-2) | | -2(5y+6)= | | 4(2a+3)-9a=-3(a-11+3) | | 4y+(-9y)= | | 35=7Ln(2x) | | 567=-n+248 | | (4r-5s+9t)3= | | 4(3-6d)=9(2d-2) | | 24w+500=849.86 | | 600=(0.03)(x) | | -4(-2v-y)-3(3y+6v)= | | 2[8(x-9)]= | | -2*5n=2 | | v+5=13 | | 4(x+2)-2x-3=2(x-2) |