If it's not what You are looking for type in the equation solver your own equation and let us solve it.
76+(12x+14)+(1/5x)=180
We move all terms to the left:
76+(12x+14)+(1/5x)-(180)=0
Domain of the equation: 5x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(12x+14)+(+1/5x)+76-180=0
We add all the numbers together, and all the variables
(12x+14)+(+1/5x)-104=0
We get rid of parentheses
12x+1/5x+14-104=0
We multiply all the terms by the denominator
12x*5x+14*5x-104*5x+1=0
Wy multiply elements
60x^2+70x-520x+1=0
We add all the numbers together, and all the variables
60x^2-450x+1=0
a = 60; b = -450; c = +1;
Δ = b2-4ac
Δ = -4502-4·60·1
Δ = 202260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{202260}=\sqrt{4*50565}=\sqrt{4}*\sqrt{50565}=2\sqrt{50565}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-450)-2\sqrt{50565}}{2*60}=\frac{450-2\sqrt{50565}}{120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-450)+2\sqrt{50565}}{2*60}=\frac{450+2\sqrt{50565}}{120} $
| (x+17)+(2x+19)+(6x-5)=180 | | Y=(0.89)x | | 5x=2x42 | | 12x-5x-165=12x=65 | | x2+3x–54=0 | | -28=4/5d= | | 120+(-11x+131x)=180 | | (x+17)=(2x+19)=(6x-5) | | 120+(11+131x)=180 | | 9b+7= | | (11x+131x)=60 | | 120=(11x+131x) | | –3−9f=–10f | | 180=120+(11x+131x) | | 8x5.5=46 | | -8z=-9z-4 | | 3/7g=9= | | -(-4x-6)=-4x-5+(-5) | | -6x-5.1+2.6=-1.12 | | 9x-20=4x+10 | | 5x-12x165=12x+65 | | (4x-7)=(5x+3)(4x-7) | | Y=3x-3+20 | | 3x+(-10)=5 | | Y=3x-3+29 | | 3y-71=2y+7 | | x+15+138=180 | | 2/3t=9= | | p2+4p-8=0 | | 2g+8=34 | | 3x+2=7x-6=83 | | 33/2-a=20/6 |