77/6x+181/2=7/2x+28

Simple and best practice solution for 77/6x+181/2=7/2x+28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 77/6x+181/2=7/2x+28 equation:



77/6x+181/2=7/2x+28
We move all terms to the left:
77/6x+181/2-(7/2x+28)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 2x+28)!=0
x∈R
We get rid of parentheses
77/6x-7/2x-28+181/2=0
We calculate fractions
616x/48x^2+(-42x)/48x^2+1086x/48x^2-28=0
We multiply all the terms by the denominator
616x+(-42x)+1086x-28*48x^2=0
We add all the numbers together, and all the variables
1702x+(-42x)-28*48x^2=0
Wy multiply elements
-1344x^2+1702x+(-42x)=0
We get rid of parentheses
-1344x^2+1702x-42x=0
We add all the numbers together, and all the variables
-1344x^2+1660x=0
a = -1344; b = 1660; c = 0;
Δ = b2-4ac
Δ = 16602-4·(-1344)·0
Δ = 2755600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2755600}=1660$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1660)-1660}{2*-1344}=\frac{-3320}{-2688} =1+79/336 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1660)+1660}{2*-1344}=\frac{0}{-2688} =0 $

See similar equations:

| 4*​x^​2=400 | | n^2+n=462 | | (1)/(3x)+(4x)/(6)=1 | | 4m=3=5 | | 4x2-11=14 | | 1.58=(0.15-x)/x | | 5(x1/2)=45 | | 3x+60=x+50=3 | | F(3)=9-6x | | 100=0.15d+13 | | 2(x2+4x+3)=4 | | 8(2x+1)=4x-3 | | Y=40+1/5x | | (n-8)/12=15/3 | | (y+3)/3=(y-5)/4 | | 3(x-3)+2(x+5)=21. | | 2y^2-8y=5 | | p-10=7p | | 5x+1.5= | | 9x^2+4x-6=0 | | 4m2+8m=3 | | x-0.85x=21.15-10 | | 8x+9=-x-3 | | -(1-3x)=4+x-(3-x) | | -3x+2=-4x-6 | | 2(x+3)-3(x+2)=7 | | 6x+4*4=40x/4 | | 280=-8(7-7x) | | 10×y+6=46 | | ?+8n=72 | | -14x-3=-6x+5 | | (8x+14)+(4x+32)=x |

Equations solver categories