If it's not what You are looking for type in the equation solver your own equation and let us solve it.
77t-7t^2=0
a = -7; b = 77; c = 0;
Δ = b2-4ac
Δ = 772-4·(-7)·0
Δ = 5929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5929}=77$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(77)-77}{2*-7}=\frac{-154}{-14} =+11 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(77)+77}{2*-7}=\frac{0}{-14} =0 $
| -w/3=55 | | 2=s=2.2 | | -1=x+(-14) | | n(n-3)/2=90 | | 6-3s=30 | | k/13=17 | | 32=h+6 | | -32=u/8 | | 99=9v | | n(n-3)/2=208 | | -87=3+9b | | 85=-4s+97 | | 10y-5y=45 | | -23=7+5c | | n+(-23)=-11 | | 97.6=t+94.6 | | 2x-1+4x+28=180 | | -12=b-17 | | 49=24s+25 | | 6(X-4)+5x(2x-5)=90 | | 5000=100(1+.25t) | | 4x+(-12)=56 | | 26=x-(-8) | | 63=9k;6,7,7, | | 98=9a+18 | | 6+x/2=2 | | 4x+-12=56 | | 27+m=-26 | | y=-9(-1)-5 | | 393x-5)=39 | | 7(-2-8x)+43=8(4-4x) | | -9x-5=x+5 |