78-x=1/3x+46

Simple and best practice solution for 78-x=1/3x+46 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 78-x=1/3x+46 equation:



78-x=1/3x+46
We move all terms to the left:
78-x-(1/3x+46)=0
Domain of the equation: 3x+46)!=0
x∈R
We add all the numbers together, and all the variables
-1x-(1/3x+46)+78=0
We get rid of parentheses
-1x-1/3x-46+78=0
We multiply all the terms by the denominator
-1x*3x-46*3x+78*3x-1=0
Wy multiply elements
-3x^2-138x+234x-1=0
We add all the numbers together, and all the variables
-3x^2+96x-1=0
a = -3; b = 96; c = -1;
Δ = b2-4ac
Δ = 962-4·(-3)·(-1)
Δ = 9204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9204}=\sqrt{4*2301}=\sqrt{4}*\sqrt{2301}=2\sqrt{2301}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-2\sqrt{2301}}{2*-3}=\frac{-96-2\sqrt{2301}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+2\sqrt{2301}}{2*-3}=\frac{-96+2\sqrt{2301}}{-6} $

See similar equations:

| 3/4-t/3=0 | | 3/4-t/3=2t-1 | | k/2-k/5-8/3-1/3=0 | | k/2-k/5=0 | | 3b-6(4b/2)=0 | | x=24/12 | | 4+3t-6=3t+2-t | | 7+4x=-9x-13 | | 3*(4^2k+8)=24 | | 5n-6=4+3n | | 2x=94-(6+5) | | k/2-8/3=k/2+1/3 | | 4(-3+n)=8 | | 3x-22=-46 | | x/2-1/4=)x/3+1/ | | -18q+6q+2q=-9q+15 | | 3x-22=46 | | b/2+1/4=0 | | X^3+3x^2+2x+4=0 | | 9×23+3×39-28=n | | -1x-1(5x8)=7 | | 630=42+13x+x^2 | | 2m+14=4 | | x^2+13x-588=0 | | 10a+7=30 | | Xx0.05=95 | | (4xY)x0.05=95 | | 5+3x=14-x | | 3x#8=17 | | 5p+8=7÷4 | | 7x+11=19=x | | 4a+7=-15 |

Equations solver categories