780=(2x-6)(x+6)

Simple and best practice solution for 780=(2x-6)(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 780=(2x-6)(x+6) equation:



780=(2x-6)(x+6)
We move all terms to the left:
780-((2x-6)(x+6))=0
We multiply parentheses ..
-((+2x^2+12x-6x-36))+780=0
We calculate terms in parentheses: -((+2x^2+12x-6x-36)), so:
(+2x^2+12x-6x-36)
We get rid of parentheses
2x^2+12x-6x-36
We add all the numbers together, and all the variables
2x^2+6x-36
Back to the equation:
-(2x^2+6x-36)
We get rid of parentheses
-2x^2-6x+36+780=0
We add all the numbers together, and all the variables
-2x^2-6x+816=0
a = -2; b = -6; c = +816;
Δ = b2-4ac
Δ = -62-4·(-2)·816
Δ = 6564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6564}=\sqrt{4*1641}=\sqrt{4}*\sqrt{1641}=2\sqrt{1641}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{1641}}{2*-2}=\frac{6-2\sqrt{1641}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{1641}}{2*-2}=\frac{6+2\sqrt{1641}}{-4} $

See similar equations:

| 2y-6+3=180 | | 13087*(17.9/y)=7529.51 | | 9w–5=22 | | 2(7-8x)+10x=32 | | 12x^2-26x-7=3x+7 | | 6=7/k | | 5(4x-7)=-105 | | 13v-6v+v-3v=20 | | -5x-3x+6=-26 | | 10-4d-5=-3-5d | | 4^6x-12=7 | | -10-3v=v+10 | | 5x–7=x+10 | | -6*x=48 | | -11=-3+b | | -5(p+3.5)=-4 | | -7.1-8.5v=-8.36-8.7v | | 4w+-6w=-6 | | 2/5=4/5h | | 2h-2h+3h-h=16 | | 9(x+10)-3x=18 | | 4^1=5x-6/3 | | 4+8n-7n=n+4 | | -28=4/5h | | 46=-16p | | -8.74-2y+9.76=-1.8y+2.1 | | p/25=29 | | 3/5=4w | | 13d-8d-d=20 | | x*0.07=20 | | 27v=999 | | 930=31j |

Equations solver categories